
Enabling Self-adaptivity in Component-based

Streaming Applications

Onur Derin, Alberto Ferrante

ALaRI, Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland

{derino, ferrante}@alari.ch

Abstract—Self-adaptivity is the capability of a system to

adapt itself dynamically to achieve its goals. By means of

this mechanism the system is able to autonomously modify

its behavior or the way in which applications are run and

implemented to achieve the goals set.

In this paper we propose a framework that uses a

component-based approach to implement self-adaptivity at

application level. By using this mechanism, the framework

provides the ability to perform both adaptation on the

structure of the application (i.e., how the components are

connected together) and on internal parameters of each

component. At application level, there is a mechanism to

monitor different parameters and to check whether the

system is meeting the assigned goals or not. A controller

drives adaptations when goals are not met.

I. INTRODUCTION

Self-adaptivity is the capability of a system to adapt

itself dynamically to achieve its goals. Goals are spec-

ified by programmers or by users and define applica-

tion requirements at high-level (i.e., as human readable

requirements, such as throughput). By defining require-

ments and adaptation mechanisms we give self-adaptive

computational systems the ability to adapt to mutating

internal and external conditions without requesting any

intervention of the user [1].

Self-adaptation capabilities are used to implement

autonomic and life-inspired systems. These systems have

the ability to self-adapt and self-configure to provide

the performance and the quality required [2] [3]. Self-

adaptive devices can be utilized in pervasive systems to

cope with mutating environmental conditions. For exam-

ple, a portable device may be frequently moved from an

office environment (where power and network plugs are

available) to an external environment (where the device

can only be battery operated and the network may be

available in different wired or wireless forms). In this

case the behavior of different system components needs

to be adapted to the new conditions (e.g., to reduce power

consumption). Furthermore, different functionality may

be proposed to the user in the new environment. Self-

adaptation can be supported by different parts of the

system and each part may or may not be aware of the

self-adaptivity capabilities of the other.

A self-adaptive system lives in an environment which

can be defined as the complementary set of the self-

adaptive system (i.e., all the things surrounding the

system). Self-adaptation can be triggered by different

events, like changes in the environment, changes in the

applications to be executed, or changes in the system

operational conditions (e.g., a battery operated system

detects a change in the battery status, or a component

that becomes faulty). Self-adaptivity not only provides

functional and operational benefits, but it also allows for

self-healing. In fact, a faulty hardware or software com-

ponent will be automatically replaced (if replacements

are available) to keep satisfying the application goals.

In this paper we propose an approach to enable self-

adaptivity at application level along with a component

framework that implements it. We propose to use a

component-based approach by which components, that

implement different functionalities, are selected and ar-

ranged together to compose applications. Components

can be substituted by other components offering simi-

lar functionalities (e.g., different implementations of an

encryption algorithm, or different encryption algorithms

of the same class); the use of components ease self-

adaptivity by easing their substitution and their reorga-

nization to provide the same results in different ways.

In this paper we only consider software components.

Though, hardware components can also be used and

mixed with software ones [4]. The model of self-adaptive

system that we took as a reference [5] natively provides

this capability. The framework we propose here not

only support self-adaptation through the replacement of

components or their reconfiguration, it also supports

changes in the topology of applications, for example

to accommodate parallel components with the aim of

satisfying high-level goals such as performances and/or

enhanced reliability. Adaptation control is not discussed

therefore no considerations are done on performance

characteristics of adaptation (e.g., timing, convergence).

A case study is discussed to show the self-adaptivity

features provided by the model.

In the remaining part of this paper we first provide

an overview of related works (Section II). In Section III

we discuss our framework for enabling self-adaptivity

at application level. Section IV provides the description

of a case study application that can be implemented by

using our framework.

II. RELATED WORK

In [6] a framework for self-adaptive component-based

software applications is described. The idea behind this

framework is to provide a standardized way to manage

self-adaptivity in software. For this reason, separation of

concerns between adaptation management and software

functionalities is proposed. Self-adaptivity is reached

by applying a set of adaptation policies on software

components. The adaptation of these policies is triggered

by certain system events that can be configured. Possible

adaptations are both in component behavior and param-

eters. Unfortunately, the authors do not discuss if and

how general goal achievement is obtained.

In [7] WildCAT, a java framework for context-aware

software applications, is described. The framework pro-

vides a dynamic model to represent the execution context

of applications. In [8] a similar approach is proposed and

tested on software for embedded systems; a list of chal-

lenges for offering self-adaptivity in embedded systems

is also provided. The challenges listed are: flexibility,

efficiency and minimality, safety, and simplicity.

In this paper we build a new framework for self-

adaptivity based on the model of self-adaptive systems

discussed in [5]. This model is generic enough to include

a large number of electronic systems. The model is

based on a layered approach and it provides the capa-

bility to manage hardware and software self-adaptivity

globally to satisfy system and application non-functional

requirements (i.e., goals such as performances and power

consumption). The two system layers defined are the

hardware and the software ones. These two layers have

separate self-adaptation mechanisms. We extended this

model with a component framework at the application

level that allows managing self-adaptation and works

hand-in-hand for system-wide goal-achievement with

the rest of the system. Yet, this framework provides

separation of concerns. The work proposed in [6] does

not provide these possibilities. Furthermore, it does

not take into account the possibility of also including

hardware components along with software ones. The

model we are using takes into account this possibility

and future versions of the framework will also include

it. Furthermore, the framework we are proposing allows

the system to adapt the topology of components used to

form applications.

III. THE SELF-ADAPTIVE COMPONENT FRAMEWORK

In order to show that a component-based approach is a

viable way to enable self-adaptivity at application level,

we are developing the SACRE (Self-Adaptive Com-

ponent Run-time Environment) component framework

that allows creating self-adaptive applications based

on software components and incorporates the Monitor-

Controller-Adapter loop with the application pipeline.

This framework is being implemented in Java. In the

remaining part of this section we describe the framework

and the adaptations that it supports.

A. The SACRE Framework

A component framework is the ground on which de-

velopers can define components and put them together to

create an application. The main constituents of SACRE

are its component model, connectors, and pipeline.

The component model is based on the KPN model

of computation [9], it has a simple language for creating

component pipelines. A component is defined by extend-

ing from the Component abstract class and specifying

its input and output ports as well as its task(). The

framework provides a base class for new components to

be created. Each component has a thread of its own and

can have named input and output ports through which it

can exchange typed messages.

A connector allows to transmit messages from the

output port to the input port that it is connected to.

Blocking FIFO queues are used as connectors between

component ports. A connector holds a queue of typed

messages. The component thread is blocked in case it

tries to read a message from an empty connector through

any of its input ports. Presently, there is no bound on the

size of the queue in the model, thus there is no blocking

during writing to an output port. A port can be connected

to at most one connector.

A pipeline is a graph of components that are connected

through connectors along their ports. More formally a

pipeline is a tuple (P, D) where P is a set of component

ports; and D is a connectivity relation, P × P that

defines the links between component ports. As long as

there are no cycles (i.e., if there is a message path from

A

B

C D

E

F

input port

connector

output port

Fig. 1. A pipeline example: A&B!C!D!E&F

component ci to cj , there is no path from cj to ci),

there are no constraints on the read/write orders within

a component. Otherwise, components are constrained to

read from and write to their ports in a specific order in

order to guarantee deadlock-freedom.

A pipeline language for assembling components have

been implemented as shown in Figure 1. A pipeline

is a list of statements separated by a semi-colon(;).

Each statement consists of !- or &-separated list of

components. ! and & are used for serial and parallel

composition respectively. In the statements & has a

precedence over !.

B. Adaptations Supported

The possible adaptations in a component-based appli-

cation are: adaptation of a parameter of a component,

on-the-fly replacement of a component with another

compatible component, adaptation of the level of par-

allelism of the application by creating parallel instances

of the component, and adaptations by transforming the

component graph to achieve goals such as security and

dependability. The last three kinds of adaptations can be

classified as structural adaptations as they impact on the

structure of the graph.

1) Parametric adaptations: In order to enable para-

metric adaptations, the component model is extended

with a configuration interface which accepts parameter

value update requests particular to the adaptable compo-

nent. However such updates get effective only after the

component is finished with the processing of the message

that is already being processed by the component at the

time of the parameter update request.

2) Structural adaptations: In order to enable on the

fly modifications to the structure of the pipeline, the ports

are made blockable, meaning that, if blocked during

adaptation, connectors won’t deliver messages. Therefore

a component replacement type of adaptation is achieved

by blocking all the input ports of a component; flushing

the component; disconnecting the ports from the connec-

tors; connecting the ports of the new component to the

unbound connectors; and starting the new component’s

thread. An important point here is the behavioral com-

patibility of the new and the old component. At syntactic

C

C1

C3

C2

a) b)

Router Merger

Fig. 2. Adaptation pattern for parallelization. Component in (a) is

parallelized by three as shown in (b)

level, this can be checked by the compatibility of port

types (determined by the message type of the port). Other

structural adaptations can be done by following some

adaptation patterns. Below, we describe parallelization

and dependability patterns.

Parallelization of a component is one type of structural

adaptation that can be used to increase the throughput of

the system as shown in Figure 2. This is done by creating

parallel instances of a component and introducing a

router before and a merger after the component instances

for each of the input and output ports. A router is a built-

in component in our framework that can work in a load-

balancing or round-robin fashion; this component routes

the incoming messages to either one of the instances

depending on its policy. If there is no ordering relation

between incoming and outgoing messages, the merger

components simply merge the output messages from

the output ports of the instances into one connector

disregarding the order of messages on the basis of

whichever message is first available. If the ordering

relation has to be preserved then the router component

labels every message that would originally go to the

component with an integer identifier that counts up for

each message from value 1. Then the merger components

have to queue up the output messages so as to achieve

an order in terms of their labels. If there are multiple

processor cores available, this mechanism would increase

the parallelism of the application. However the condition

for applicability of such an adaptation is the absence of

inter-message dependencies.

By using a similar mechanism, our framework can

adapt the dependability at the application level by struc-

tural redundancy as seen in hardware design. Parallel

instances of the component are created on different cores

along with multiplicator components and majority voter

components for each input and output ports respectively.

Multiplicator component creates a copy of the incoming

message for each redundant instance and forwards it to

them along with a unique label identifying the set of

copied messages. Majority voter component queues up

all the output messages until it has as many messages

with the same label as the number of redundant in-

stances. Then it finds out the most recurrent message and

sends it to its output connector. A time-out mechanism

can also be put in place to tolerate when a core is faulty

and no message is being received by a component.

IV. CASE STUDY

As shown in Figure 3, a self-adaptive MJPEG stream-

ing server is being realized on our self-adaptive compo-

nent framework. Source component grabs the raw image

frames and feeds the pipeline with tokens of type Frame.

Frame contains the image data along with the width,

height, maximum grayscale value and quantization table.

Initially the image data is in PGM format and it gets

changed along the pipeline as the frame goes through

the components (2D discrete cosine transform, zigzag

scanning, run-length encoding). Sink component creates

the MJPEG stream and serves it over to the network.

We are considering a scenario where the application

goal is to maintain a fixed streaming rate in frames per

second (FPS). This goal implies a maximum latency

of 1/FPS seconds for the pipeline. To create a sample

adaptation space, the quantization component is designed

with an adaptable picture quality parameter; the source

can be also tuned to provide images with different sizes

(picture size parameter). Reduced quality in encoding

results in smaller frame size. Similarly, reducing picture

size results in a smaller frame size as well as a smaller

latency. Parallelization pattern can be applied to the

DCT as it is the most computation intensive component.

Monitoring of the latency is done by measuring the

time it takes for a frame to reach the sink component.

Network bandwidth is monitored by a boolean variable

that indicates whether the throughput before the network

queue is greater than the throughput after the network

queue. An adaptation control algorithm can be imple-

mented that takes the difference between monitored and

target latency as its error value and controls the picture

quality and size taking also into account the current

bandwidth condition. Currently we are implementing the

self-adaptivity features of our component framework on

this video streaming server case study.

V. CONCLUSIONS

In this paper, we propose an approach to imple-

ment self-adaptive streaming applications on compo-

nent frameworks. This approach is being implemented

in the SACRE framework. SACRE currently supports

on-the-fly replacement and parametric adaptations and

Adapter

Controller
Monitor

R2B

Quality level

Source DCT Quantize ZZE RLE Sink

Picture size,

Network bandwidth

Latency,

Fig. 3. Block diagram of the self-adaptive MJPEG streaming server

adaptation patterns are currently being implemented. A

self-adaptive video streaming server is being developed

on our component framework to validate the proposed

approach. Future work will focus on the completion of

the case study; investigation of automatic synthesis of

application level controllers and monitors from applica-

tion goals.

REFERENCES

[1] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner,

G. Johnson, N. Medvidovic, A. Quilici, D. Rosen-

blum, and A. Wolf, “An architecture-based approach

to self-adaptive software,” 1999. [Online]. Available:

citeseer.ist.psu.edu/oreizy99architecturebased.html

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic

computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[3] L. Józwiak, “Life-inspired systems and their quality-driven

design.” in ARCS, ser. Lecture Notes in Computer Science,

W. Grass, B. Sick, and K. Waldschmidt, Eds., vol. 3894.

Springer, 2006, pp. 1–16.

[4] O. Derin and A. Ferrante, “Simulation of a self-adaptive run-

time environment with hardware and software components,”

in Proceedings of the Workshop on Software Integration and

Evolution @ Runtime (SINTER’09). New York, NY, USA:

ACM, 2009.

[5] O. Derin, A. Ferrante, and A. V. Taddeo, “Coordinated manage-

ment of hardware and software self-adaptivity,” J. Syst. Archit.,

vol. 55, no. 3, pp. 170–179, 2009.

[6] T. L. Pierre-Charles David, “Towards a framework for self-

adaptive component-based applications,” Lecture Notes in Com-

puter Science, Distributed Applications and Interoperable Sys-

tems, vol. 2893, pp. 1, 14, 2003.

[7] P.-C. David and T. Ledoux, “Wildcat: a generic framework for

context-aware applications,” in MPAC ’05: Proceedings of the

3rd international workshop on Middleware for pervasive and

ad-hoc computing. New York, NY, USA: ACM, 2005, pp. 1–7.

[8] J. Buisson, C. Carro, and F. Dagnat, “Issues in applying a model

driven approach to reconfigurations of satellite software,” in

HotSWUp ’08: Proceedings of the 1st International Workshop

on Hot Topics in Software Upgrades. New York, NY, USA:

ACM, 2008, pp. 1–5.

[9] G. Kahn, “The semantics of a simple language for parallel

programming,” in Information Processing ’74: Proceedings of

the IFIP Congress, J. L. Rosenfeld, Ed. New York, NY: North-

Holland, 1974, pp. 471–475.

