
A Protocol
For Pervasive Distributed Computing Reliability

Alberto Ferrante, Roberto Pompei, Anastasia Stulova, Antonio Vincenzo Taddeo 1

ALaRI, Faculty of Informatics, University of Lugano, Lugano, Switzerland
{ferrante, pompeir, stulovaa, taddeo}@alari.ch

Abstract—The adoption of new hardware and software archi-
tectures will make future generations of pervasive devices more
flexible and extensible. Networks of computational nodes will
be used to compose such systems. In these networks tasks will
be delegated dynamically to different nodes (that may be either
general purpose or specialized). Thus, a mechanism to verify
the reliability of the nodes is required, especially when nodes
are allowed to move in different networks. In this context, the
reliability of nodes is determined by their ability to execute the
tasks assigned to them with the promised performances.

This paper proposes a protocol to evaluate the reliability of
the different nodes in the network, thus providing a trusting
mechanism among nodes which can also manage the soft/hard
real-time constrains of task execution. Some simulation results
are also shown to help describing the properties of the protocol.

I. INTRODUCTION

Future pervasive systems will adopt new architectures to
be both power efficient and capable of performing a large
variety of operations. Several European projects are focusing
on enabling components for the next generation of pervasive
systems by addressing different topics ranging from low-power
design [1] to self-adaptability and reconfigurability [2].

One of the ideas is to use distributed computational nodes to
compose such pervasive systems. These nodes may be highly
specialized or general purpose; each of them may be stati-
cally configured, reconfigurable, or even self-adaptive. This
structure will give the new pervasive systems great flexibility.
Nodes (or sets of nodes) will be able to join different networks
depending on the place where the pervasive device is moved.
Those nodes will enrich the newly joined networks with their
functionalities. One key element of this architecture is the
possibility to distribute tasks over the nodes dynamically. Each
node, once it has been awarded with a task to perform, will
be able to delegate parts of the task to other nodes. Tasks may
be assigned by using different criteria depending on the kind
of network and nodes considered. Task delegation, though,
requires some support mechanisms to be effective. One of
the main support mechanisms required is the evaluation of
reliability of nodes. A node is said to be non-reliable when
it accepts a task to be executed and it does not execute it
properly. This may happen for different reasons (non correct
evaluation of the free resources, faulty hardware in the node,
. . .) and in different ways (results delivered late, wrong results,
. . .).

1Authors appear in alphabetical order.

More in general, the problem of trust among nodes is quite
important for this kind of systems to work in a reliable way.
Trust, in this environment, can be seen in two different ways:
the possibility to verify the identity of the nodes and the
possibility to verify that nodes are reliable before assigning
tasks to them, as aforementioned. Both of these mechanisms
are necessary to guarantee the reliability of the system: before
assigning a task to a node its reliability needs to be verified
to avoid bad nodes (i.e., nodes that do not deliver the required
results or do not deliver them in time). Identity verification is
a necessary step in reliability verification.

In this paper we address the problem of reliability evaluation
for nodes. The aim of this work is to provide a lightweight
solution that can be implemented both in software and in
hardware. The trust value must be kept up-to-date during
the lifetime of the system, but the update operations must
be simple enough to be executed with constrained resources.
However, the trust protocol should provide protection against
possible system faults and attacks. The problem of identity
verification is outside the scope of this paper. Though, some
considerations about this topic are provided in Section II.

In the remaining part of the paper we describe the trusting
protocol we have developed. Some simulations results are
presented to show the properties of the protocol. Section II
presents some related works; the description of the protocol is
contained in Section III. Section IV describes the simulation
model and shows some simulation results. Section V discusses
the behavior of the systems when a number of attacks are
performed against it.

II. RELATED WORK

In this section we provide an overview on works addressing
the problem of trusting in distributed networks. A general
methodology for trust management in distributed computing
can be found in [3]. The authors categorize the trust rela-
tionships into two layers. In particular, the trust mechanisms
can be reputation-based or credential-based. In the first case,
a node behavior is evaluated by considering its reputation
with the other nodes in the system; in the second case, the
trust mechanism restricts the access to resources and services
based on credentials of nodes. According to the classification
proposed in [3], our trusting protocol can be classified as
reputation based and it refers to the delegation trust in a
decentralized manner.

IEEE International Conference on Wireless & Mobile Computing, Networking & Communication

978-0-7695-3393-3/08 $25.00 © 2008 IEEE

DOI 10.1109/WiMob.2008.23

574

Another work on trust management has been presented
in [4]. The authors underline the benefits of introducing
trust into distributed networks by analyzing the establishment
mechanism, its vulnerabilities, and performances in a scenario
were a routing protocol is secured.

In [5] a trusting protocol is described: different trust levels
are assigned to different network nodes; these values are
updated by using the reports of intrusion detection systems
located in each node. The trust levels are used to evaluate
the security of message routing. In the aforementioned paper,
unlike in our work, the trust computation is only based on
indirect observations.

The problem of identity verification has also been addressed
for peer-to-peer networks. An example of a trusted authentica-
tion protocol is shown in [6]: the authors propose a decentral-
ized mechanism to authenticate the nodes based on threshold
blind signatures which are used to certify pseudonyms of
nodes. Once a pseudonym is assigned and validated by other
signatures, its value is saved and used for all successive
interactions without any runtime update.

In [7] a reputation mechanism for P2P file-sharing is pro-
posed to assess both the reliability of a resource to download
and its provider. Such a mechanism is based on a distributed
polling algorithm that should reduce the spreading of bad
contents and should recognize malicious nodes. The last
two approaches require many public key verifications. Those
operations are resource and time consuming and, thus, not
suitable for limited-resource devices.

In grid networks some reliability evaluation mechanisms
have been already developed; some of these mechanisms are
compared one against the other in [8]. All of these systems rely
on the high connectivity and on the computational resources
available in grid systems; in general, these conditions will
not apply to our nodes that will be designed to be used in
pervasive systems. Furthermore, the execution of hard or soft
real-time tasks may be required on this kind of systems. None
of the already developed protocols address these problems and
this is the main motivation for developing a new protocol. In
this work we have been inspired both by the reliability check
protocols used in grid systems, such as the weighted feedback
one [8] [9] and by the peer-to-peer trusting protocols, such as
PGP [10, pp. 37-63] [11].

III. THE TRUST PROTOCOL

The reliability of nodes can be evaluated in different ways,
but, in general, it can be considered as the capability of nodes
to respect a service agreement. This is a particular procedure
that lies behind the identity certification or the encryption
process. In the remaining part of this section, the word trust is
used to identify the reliability of nodes. However, the protocol
presented here can be easily extended to incorporate identity
checking and trusting in the classic sense.

As shown in Figure 1, task delegation is a process composed
by different steps. The delegating node sends a query to nodes
nearby with details on the task to perform and the constraints
to satisfy for its execution. All nodes in the environment reply

Init iator Node(K)

TaskQuery(J)

TQueryResponse(Id;C)

TrustQuery(Na)

IndirectTrustResponse(Na)

Na=ComputeAvailableNode(N)

Nt=ComputeTrustValue(Na)

Trusted Node

AssignTask(J)
Execute(J)

Result(J)

UpdateDirectTrustValue(Nt)

Fig. 1. Task delegation protocol.

by providing the information on the possibility to execute the
required task; if any identity check mechanism is required
by the security policy enforced in the system, the identity is
checked at this step by means of proper certificates. A second
query is then performed to collect trusting information on
the available peers. All the nodes in the network (or part of
them) reply to this query with the personal trust value that
each one of them has on the available nodes; this value is
used by the delegating node as indirect experience (i.e., non-
directly collected reliability information about the other nodes
in the network). The algorithm can proceed by calculating
the trust values of all the involved available nodes. For this,
both personal experience (i.e., the evaluation of previous task
executions by the nodes that is being evaluated) and indirect
experience are used. Such a trust information determines the
delegation of the task to the highest trustworthy node. To avoid
a too high overhead for trust computation, the number of nodes
considered may be limited to a certain threshold.

Once the execution of a task ends, the results are sent back
to the delegating node and they are evaluated on the light of the
related service agreement. The personal trust value related to
the involved nodes is then updated based on result evaluation;
this operation is done by comparing the obtained performance
with the parameters specified in the service agreement. Timing
constraints on single execution tasks and frequency constraints
on continuously executed tasks are both included. For periodic
tasks, the real-time concept is strictly related to the different
specific applications; a good approach is to reduce it to a
constraint on frequency. The strictness applied to real-time
constraints can be reduced to two levels: hard and soft.

A. Trust data collection

The trust data collection process is started after a delegation
request by the trusting node; more precisely it is started after

575

the reception of answers from the other nodes in the network.
The nodes available for executing the considered task are said
to be active.

In the general view of the system, each node in the network
may have information about any of the other nodes. The
knowledge of the network can be used during trust value
computation. Thus, for computing the trust value of a node Xj

as seen by the node Xd , both the direct personal experience
of Xd with Xj and the indirect experience of all the other
nodes in their interactions with Xj should be used. The direct
trust value summarizes the personal experience of the node Xd .
The indirect trust value, instead, summarizes the experience,
regarding node Xj, collected from the other nodes in the
network.

The indirect trust value of the node Xj can be computed by
the node Xd as follows:

IEd
j = ∑

i
V i

j , i, j ∈ [1,N]; i �= j; i �= d (1)

where N is the number of nodes in the network and i varies in
the set of the mediating nodes only. V i

j is the direct experience
of the node Xi with the Xj one.

The trust value of a node Xj as seen by Xd can then be
computed as follows:

T d
j = wp ×V d

j +wi ×
∑i V

i
j

m
i, j ∈ [1,N] i �= j; i �= d (2)

also in this equation i varies in the set of the mediating nodes
only; wp and wi are weights that are used to quantify how
much the trust value is affected by the personal experience
and by the indirect experience; the sum of wp and wi must be
1. m ≥ 1 is the number of mediating nodes.

The trust levels are numbers contained in predefined ranges.
Thus, the ranges must be carefully evaluated to obtain a
cheap enough implementation of the protocol. For this work
a 16-level, 4-bit trust value has been chosen. The level 0
corresponds to the complete ignorance state; the level 15
identifies a node that is fully trusted.

The procedure explained above to compute the trust value
of a node is not suitable for a large number of nodes: in that
case it would be required to store a large number of trusting
values both direct and indirect. The simplest solution is to
limit the evaluation of trusting only to the first k nodes which
provide their evaluation on a given active node; k has to be
properly selected according to the system properties. Further
investigations on this are being performed.

B. Task Delegation

During the delegation process, the trust value must be
evaluated in the light of the kind of task that is being delegated.
By assuming that a failure on a hard constrained task can
cause worse consequences than on a soft constrained one,
its delegation could be restricted to all the nodes that have
higher trust levels; soft constrained tasks can be executed by
all nodes. A set of thresholds for the different categories of
tasks is the following: a trust value of 14 for hard real time
tasks; 12 for hard deadline tasks; 9 for soft real-time tasks;and

Fig. 2. Modifiers for the trust values.

2 for soft deadline tasks. These thresholds are also shown in
Figure 2. The threshold definition is system-dependent: it can
be defined either at system level or in every single node and
may be different from the one used in our case.

The delegation of soft constrained tasks to nodes with low
levels of trust may become necessary when no enough trusted
resources are available. This approach also gives the non-
trusted nodes the possibility to gain trust when they behave
well.

The dynamic property of the nodes makes the condition
of complete ignorance about the environment very common.
In this case an initialization procedure for the trust values
should be started. The easiest way is to randomly delegate
a unconstrained task to different nodes and to update their
trust values according to the results obtained. Other approaches
that try to reduce the number of iterations necessary assign
trust values can also be used. For example, the trusting node
can compute it by using the indirect trust values only (i.e.,
by putting wp = 0). Another way is to initialize the personal
experience to a predefined value (e.g., 7). The trust values will
anyway converge quickly to the correct values, as shown in
Section IV.

C. Trust Value Update

Each node awarded of a task to be executed, is evaluated
each time it sends back results to the trusting node. This
evaluation consists of a comparison between the negotiated
deadline and the time at which the results arrived. Frequency
constraints are more complex to be evaluated, but as said
before, they can be considered as time constraints applied
periodically. Every time a result related to a periodic task is
received, its related counter is incremented. This counter is
checked at proper intervals of time to compute the average
frequency reached in that period; the counter is then reset.
If frequency obtained by means of these operations is equal
or higher than the required frequency then the constraint is
respected, otherwise it is not. No evaluation is performed
on the correctness of the results. Though, error detection
techniques can be used and the results evaluation can be easily
extended to also incorporate this check.

The history of the trust relationships between the trusting
node and the trusted nodes is completely kept in the personal
trust value. Such a value is kept and updated by the trusting
node every time an task delegation ended and results evaluated.
Thus, the update process, which is the last of the communica-
tion activities, is a fundamental part of the whole algorithm.
The update process should be simple, as it needs to be repeated
for each received result.

576

The personal trust value of the node Xj is updated by using
the following formula:

V d
j (t ′) = V d

j (t)+M (3)

where M is one of the modifiers of Figure 2. Positive/Negative
modifiers are used for positive/negative result evaluations. A
different set of modifiers (shown in Figure 2) can be used
for tasks with hard constraints. It has been chosen in such
a way that each failure will make the trust level go under
the threshold for executing tasks with hard constraints. This
choice has been taken because it is supposed that if the node
fails to execute a very important task, it needs to regain its
trust before having another real-time task assigned.

IV. SIMULATIONS

In this section we describe some of the experiments we
have performed on a simulated system. Our goal was to test
the trusting protocol we have developed and to better study its
properties. Some preliminary simulations helped us in improv-
ing the protocol and in tuning some of its parameters. Though,
some further improvements can be added, as described later
in this paper.

In the remaining part of this paper we briefly describe
the simulation model we have used and the results we have
obtained.

A. Description of the Model

The system has been simulated by means of a SystemC
model. The SystemC language [12] was selected to describe
our model as it provides the capability to easily describe
concurrently running components as the ones we are proposing
in our model. In fact, this language was thought to model
hardware/software systems.

The model simulates the network message exchanges nec-
essary to compute the trust values only.

The computational network that we have modeled is com-
posed of 35 nodes. The network is composed of general
purpose processors. As mentioned before, this may not be
true in a real life case as also specialized processors may
be present. Though, this does not make any difference in the
trust protocol. On the present model the delays related to the
different operations (e.g., network communications) are not
modeled; for this reason we did not measure any performance
figure. Our intent was just to study the evolution of trust values
in different conditions and the level of protection provided by
the protocol against faulty nodes.

The constraints of the different delegating nodes for task
execution are randomly generated; these values are evaluated
from the active nodes and compared to their available re-
sources. A different level of faultiness (i.e., the percentage
of interactions in which the node behaves in a bad way) can
be simulated for every node. Though, the instants of time in
which faults occur follow a random distribution.

All the tasks considered in our simulations only had soft
deadlines. In all the simulations we assumed wp and wi of
Equation 2 to be 0.7 and 0.3, respectively.

50 500 5000 10000

%
 o

f t
ot

al

number of tasks assigned

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Fig. 3. Trust value evolution of a 0% faulty node.

500 5000 50000 10000

%
 o

f t
ot

al

number of tasks assigned

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Fig. 4. Trust value evolution of a 100% faulty node.

The trust value for all nodes has been initialized at 7; this
value then evolves by following the modifiers shown in Figure
2.

B. Simulation Results

Different experiments have been performed on the system.
The goal of these experiments was to explore the properties
of our protocol with respect to trusting among nodes.

Figure 3 shows the trust evolution of a 0% faulty node (i.e.,
all the assigned tasks are completed in time), n0, as seen by all
the other nodes in the network. The evolution of its trust value
is studied over the total number of tasks globally assigned on
the network. After the assignment of the first 50 tasks (of
which 2 awarded to n0) 6% of the nodes increased the trust
value of n0 to 10. After 500 tasks (of which 17 assigned to
n0) 34% of the nodes increased the trust value of n0. Though,
a small number of nodes (3%) evaluate n0 in a very bad way
(trust value equal to 4). This is not due to a flaw in the protocol,
but to the problem of conflicting task assignments: a node
declare its availability for two tasks and both of them are
awarded to the node, but the node itself does not have enough
resources for completing both. After the assignment of 5,000
tasks (of which 172 assigned to n0) only 34% of the nodes
evaluate n0 with the initial value of 7; all the other nodes rate
it at least 10. After 10,000 assigned tasks, 85% of the nodes
rate n0 at least 10. 32% of the nodes rate it 15.

577

Fig. 5. Trust value of a 50% faulty node as computed by another node in
the network. Time measured in number of assigned tasks in the network.

Fig. 6. Failure rate of the network of nodes when 50% of the nodes are
10% faulty and all the others have different levels of faultiness (x axis).

Figure 4 shows the trust value evolution for a node that
is 100% faulty (i.e., it does not complete any of the tasks
assigned to it). This node is named n100. The time scale
is again the total number of tasks globally assigned in the
network. After the assignment of 50 tasks (of which 2 awarded
to n100) 6% of the nodes decreased the evaluation of n100 to
4. After 50 tasks (of which 13 awarded to n100), 15% of the
nodes rate n100 below 5; 9% of the nodes rate it 1 or 2. After
5,000 tasks (of which only 37 awarded to n100), 33% of the
nodes rate n100 below 5; 27% of the nodes rate it 1 or 2. After
10,000 tasks (of which only 58 awarded to n100), 44% of the
node rate n0 below 5; 35% of the nodes rate it 1 or 2. As can
be noted by the aforementioned data, the convergence of the
negative opinion on a node is a slow process. This is due to
the fact that very few tasks are assigned to the faulty node due
to the recommendation system.

Figure 5 shows the trust value evolution over time for a node
that is 50% faulty. This trust value is the one measured by
another node in the network. The time considered is again the
number of tasks assigned globally in the network. As shown
by the graph, the trust value is correctly staying around the
average value (7).

Figure 6 show the global task failure rate in the network
when 18 of the 35 nodes are not faulty at all and the other
nodes have variable levels of faultiness (from 0 to 100%). The
graph compares the results obtained when no trust protocol
is used with the ones obtained when our trust protocol is
adopted. The trust protocol is used in two flavors: with or
without considering indirect experience. The use of the trust
protocol provides a dramatic reduction of the unsuccessful

tasks. In fact, tasks tend to be assigned to non faulty nodes,
if any are available. The faultiness of the network increases
proportionally to the faultiness considered for the faulty group
of nodes when no trust protocol is used; it increases with a
lower slope when the trusting protocol is used. The solution
in which also indirect trust is used outperforms all the others.
Different values for wi and wp can be used to give more
weight to the indirect trust value. In this case, the number of
failing tasks further decreases. Thus, it makes the system more
vulnerable to some attacks, as explained later in the following
section.

V. SIMULATED ATTACKS

In Section IV we have shown how the trust protocol
behaves in normal circumstances. In this section we show the
behavior of the system when different kinds of attacks are
performed on it; furthermore, we propose some solutions to the
possible problems caused by some of these attacks. The attacks
considered here are the ones called bad mouthing, Sybil, on-off,
and conflicting behavior. We do not discuss denial of service
attacks.

1) Bad Mouthing Attack: The bad mouthing attack refers
to malicious nodes that provide wrong recommendations.
The attack can be performed either by providing negative
recommendations of a well behaving node, or by providing
positive recommendations of a non well behaving node. The
second variant is the most dangerous as it makes the nodes in
the system trust a faulty node.

In our simulations we considered a number of attackers pro-
viding a trust value of 1 for a target node to evaluate how much
a malicious mediating node can decrease the efficiency of the
trusting protocol. For each of these simulations we considered
5000 task assignments with 35 nodes in the network. Scenarios
with 0, 1, 5, and 10 malicious nodes have been considered. As
a consequence of these attacks, the number of tasks assigned
to the target node is 347, 307, 289, and 46, respectively. The
number of delegations slowly decreases when the number
of negative recommendations increases. Thus, the protocol
is robust against such an attack. In our scenario the task
assignment procedure starts to be significantly influenced by
the attack when at least 30% (i.e., 10) of the nodes are
malicious. In this case, tasks are assigned to other available
nodes that are not subject to the attack.

The protocol can be enhanced in different way to provide
protection against this kind of attacks. A history of all direct
delegations to a node can be used to perform a more accurate
analysis of its behavior. Moreover, we can increase the weight
of direct experience, wp, in Equation 2 to reduce the effects
of recommendations.

2) Sybil Attack: If a malicious node can remove its bad trust
history by registering as a new node, the system is subject
to the so called Sybil attack. Our trusting protocol do not
consider any specific protection against this attack. Though,
as described above, the reliability protocol should be coupled
with a proper identity trusting protocol. The authentication of
the identity prevents Sybil attacks, as discussed in [6].

578

3) On-Off Attack: When a malicious node behaves alterna-
tively bad and well, we are in presence of an on-off attack.
Aim of this attack is to try hiding a malicious node from
the detection mechanism. This is done by taking advantage
of the dynamic evolution of trust in the time domain: the
behavior of a node keeps changing from good to bad. This
way the node can compromise the overall performance of the
distributed system. Two different aspects determine how much
a distributed system is exposed to this kind of attacks: the
weight of a good/bad action in the trust update procedure (i.e.,
how fast a node becomes highly trusted/untrusted) and how
much a failure in executing a task influences the performance
of the system.

The modifiers used in our protocol for positive and negative
evaluations of task executions are shown in Figure 2. By
looking at Figure 3 and Figure 4 we can notice that gaining an
high trust value takes more steps than losing it. In particular,
we can notice that non-well behaving tasks tend to be isolated
quickly. Moreover, Figure 5 shows that if a node behaves
inconsistently well and bad (50% faulty), its trusting value
stabilized around the value of 7.

4) Conflicting Behavior Attack: We have a conflicting
behavior attack if a node behaves in different ways with
different peers; this may affects the relative trust opinion
among the peers. In practice, due to this inconsistency in
behavior, one node (N1) can have judge the malicious one
(Mx) as trusted; the same malicious node may be evaluated
as untrusted by another peer, N2. If the trusting evaluation
of nodes was also influenced by their reliability in providing
recommendations, the conflicting behavior of Mx with N1 and
N2 would negatively affect their relationship.

In our trusting protocol the reliability of nodes in providing
recommendations is not evaluated. Thus, this attack does not
have any influence on our distributed system. In our protocol,
nodes that have an inconsistent behavior will be classified
as trusted by some nodes and non-trusted by some others.
The recommendation system helps in classifying the malicious
nodes as partly bad (the number of nodes providing a negative
opinion depends on the behavior of the malicious node). Thus,
the number of tasks assigned to them will be highly decreased.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have described a protocol aimed at pro-
tecting a network of computational nodes from the faulty
and malicious ones by evaluating their trustworthiness. The
protocol was designed to be as efficient as possible from
the computational resources stand point; more complex and
effective security mechanisms can be implemented at the price
of added computational resources.

We performed some simulations that allowed us to better
study the properties of the protocol and to simulate some well
known attacks that can be performed against distributed com-
putational systems. The simulations showed that the protocol
provides the capability to isolate faulty and malicious nodes in
the network. The protocol is also able to mitigate the effects

of most of the attacks. Further protection can be added by
slightly modifying the protocol.

Further work will be performed for improving the trusting
protocol and for better tuning its parameters; the simulations
will be extended to support experiments with mixed kinds of
tasks and with different values for the wp and wi parameters to
better study the influence of indirect trust on the system. Ad-
ditionally, more effort will be put in improving the protection
provided against the different attacks discussed in the paper.

VII. ACKNOWLEDGMENTS

This work was partially supported and funded by the
European Commission under the Project AETHER (No. FP6-
IST-027611). The paper reflects only the authors’ view; the
European Commission is not liable for any use that may be
made of the information contained herein.

REFERENCES

[1] LoMoSA+ Consortium, “Lomosa+ project website,” 2005, http://www.
lomosa.org.

[2] Gamrat C. and Philippe J-M., “Self-Adaptive Embedded Technologies
for Pervasive Computing Architectures: SANE Concept - Extended
Abstracts,” in Directions in FPGAs and Reconfigurable Systems: Design,
Programming and Technologies for adaptive heterogeneous Systems-on-
Chip and their European Dimensions, DATE, 2007.

[3] Weiliang Zhao, Vijay Varadharajan, and George Bryan, “General
Methodology for Analysis and Modeling of Trust Relationships in
Distributed Computing,” in Journal of Computer (JCP), ACADEMY
PUBLISHER, Ed., vol. 1, no. 2. ACADEMY PUBLISHER, May 2006,
pp. 42–53.

[4] Y. Sun, Z. Han, and K. Liu, “Defense of trust management vulnerabilities
in distributed networks,” Communications Magazine, IEEE, vol. 46,
no. 2, pp. 112–119, February 2008.

[5] Z. Liu, A. Joy, and R. Thompson, “A dynamic trust model for mobile
ad hoc networks,” Distributed Computing Systems, 2004. FTDCS 2004.
Proceedings. 10th IEEE International Workshop on Future Trends of,
pp. 80–85, 26-28 May 2004.

[6] D. Quercia, S. Hailes, and L. Capra, “Tata: Towards anonymous
trusted authentication.” in iTrust, ser. Lecture Notes in Computer
Science, K. Stlen, W. H. Winsborough, F. Martinelli, and F. Massacci,
Eds., vol. 3986. Springer, 2006, pp. 313–323. [Online]. Available:
http://dblp.uni-trier.de/db/conf/itrust/itrust2006.html#QuerciaHC06a

[7] E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati, and F. Vi-
olante, “A reputation-based approach for choosing reliable resources
in peer-to-peer networks,” in CCS ’02: Proceedings of the 9th ACM
conference on Computer and communications security. New York,
NY, USA: ACM, 2002, pp. 207–216.

[8] J. D. Sonnek and J. B. Weissman, “A quantitative comparison of
reputation systems in the grid,” in GRID ’05: Proceedings of the 6th
IEEE/ACM International Workshop on Grid Computing. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 242–249.

[9] F. Azzedin and M. Maheswaran, “Evolving and managing trust in grid
computing systems,” Electrical and Computer Engineering, 2002. IEEE
CCECE 2002. Canadian Conference on, vol. 3, pp. 1424–1429 vol.3,
2002.

[10] P. Zimmermann, An Introduction to Cryptograpy. Network As-
sociates, 1999, available at: ftp://ftp.pgpi.org/pub/pgp/6.5/docs/english/
IntroToCrypto.pdf.

[11] P. Feisthammel. (2004) Explanation of the web of trust of PGP. http:
//www.rubin.ch/pgp/weboftrust.en.html.

[12] “SystemC Official Website,” http:/www.systemc.org/, 2008.

579

