System Policies for Gradual Tuning of Security and Workload in Wireless Sensor Networks

Antonio V. Taddeo, Luis Germán García Morales, <u>Alberto Ferrante</u>

ALaRI, Faculty of Informatics, University of Lugano, Switzerland

e-mail: ferrante@alari.ch



Outline

Introduction Gradual Adaptation Case Study

Wireless Sensor Networks

Introduction

➤Wireless Sensor Networks

- ➤ Energy In WSN Nodes
- ➤ Security for WSN
- ➤ Problem Statement

Gradual Adaptation

Case Study

Composed of a large number of nodes:

- small;
- inexpensive;
- capabilities:
 - sensing,
 - processing,
 - communication.

Energy In WSN Nodes

Introduction

➤Wireless Sensor Networks

≻Energy In WSN Nodes

- ➤ Security for WSN
- ➤ Problem Statement

Gradual Adaptation

- Local power source:
 - ◆ limited;
 - non-replaceable;
- not enough for environment monitoring applications:
 - energy harvesting.

Security for WSN

Introduction

≻Wireless Sensor

Networks

➤ Energy In WSN Nodes

➤Security for WSN

➤Problem Statement

Gradual Adaptation

Case Study

- Required by many applications;
- resource consuming;
- increases consumed energy;
- static.

Università della Svizzera italiana

Problem Statement

Introduction

➤Wireless Sensor Networks

≻Energy In WSN Nodes

➤ Security for WSN

➤ Problem Statement

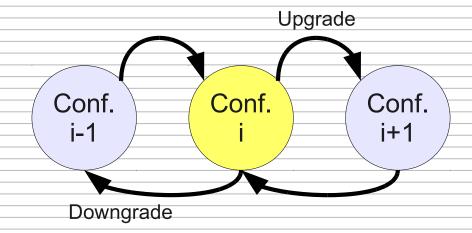
Gradual Adaptation

Case Study

There may be periods of time in which the energy available is very limited.

- Goals
 - Maximize the number of running tasks.
 - Maximize task security level.
- Constraints
 - Satisfy task security requirements.
 - Satisfy constraints on energy consumption.

Gradual Adaptation


Introduction

Gradual Adaptation

➤Gradual Adaptation

➤ Task policies

➤ Self-adaptation Policies

- Different contiguous configurations are adopted at each step.
- Adaptations governed by policies:
 - ◆ for tasks;
 - for self-adaptation.

Task Policies (1/2)

Introduction

Gradual Adaptation

➤ Gradual Adaptation

➤ Task policies

➤Self-adaptation Policies

- Security:
 - algorithms classified by:
 - resources/energy requirements;
 - security level (classes of algorithms).
- Period
- Execution status

Task Policies (2/2)

Introduction

Gradual Adaptation

➤ Gradual Adaptation

- ➤Task policies
- ➤Self-adaptation Policies

- Task priority
- Adaptation order:
 - ◆ Auto
 - Security first
 - Period first
 - Suspend only
 - ◆ None

Self-adaptation Policies

Introduction

Gradual Adaptation

- ➤ Gradual Adaptation
- ➤ Task policies
- ➤Self-adaptation Policies

- Task selection criterion:
 - Most energy-demanding tasks
 - ◆ Less-degraded tasks
 - ◆ Lower priorities first
 - ◆ Least recently-started tasks
- Number of tasks to be adapted
- Monitoring period

Case Study

Introduction

Gradual Adaptation

Case Study

➤ Case Study

≻Results

➤ Conclusions and Future Work

- WSN composed by Sun SPOTs (Sun Small Programmable Object Technology)
- Secure communication among the nodes and the base station
- Periodic tasks with different ent sample to collects
- Tasks with different policies

Results: overhead

Introduction

Gradual Adaptation

Case Study

➤ Case Study

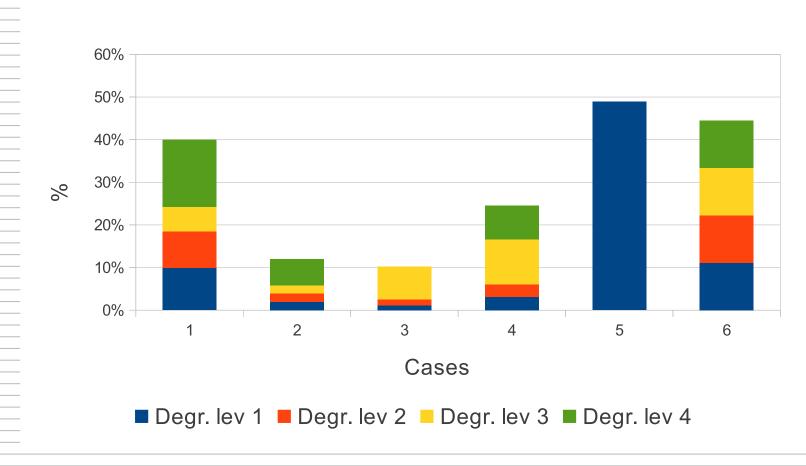
≻Results

➤ Conclusions and Future Work

- Gradual adaptation provides the ability to meet the battery constraint (12 hours)
- Energy overhead of 0.3-0.6%
- Time overhead of 0.3-1.6%

Results: behavior of policies

Introduction


Gradual Adaptation

Case Study

➤ Case Study

≻Results

➤ Conclusions and Future Work

Tasks degraded for 10-48% of total time.

Conclusions and Future Work

Introduction

Gradual Adaptation

Case Study

➤ Case Study

≻Results

➤ Conclusions and Future Work

Conclusions:

- The mechanism and the policies allow the system to maximize the number of running tasks, their performance, and their security.
- The policies can be used to customize the behavior of the adaptation system.
- The overhead of the mechanism is acceptable.

Future work:

The mechanism will be extended to support a more accurate energy consumption estimation.

