

Alberto Ferrante

Security Association caching of a dedicated

IPSec crypto-processor: dimensioning the

cache and software interface

Supervisor: Prof. Roberto Negrini
(Politecnico di Milano)

Assistant supervisor: Dr. Jefferson Owen
(ST Microelectronics)

May 2002

Acknowledgements

This work is dedicated to my parents and all my relatives

for their help and support throughout my life and my

academic career, for which I will always be grateful.

I would like to thank Jeff Owen and Prof. Roberto Negrini

for their fundamental help in developing this thesis.

I also want to thank my friends for playing such a

fundamental role in my life, sharing with me the good and

the bad moments. Among the others I want to especially

thank Laura, Stefania, and Stephanie who also spent some of

their time giving me precious suggestions on the language

used in my thesis.

In addition, I want to thank all the people of ALaRI: the

secretariat, the professors, and all my master's

colleagues, both for the important contribution to this

project and for having shared with me such an important and

positive experience.

A special thanks to 2 Emme Progetti that lent me a laser

printer to make hardcopies of this thesis.

Last, but not least, I want to thank all my university

fellows who gave me their friendship, shared with me some

knowledge or had simply some good time with me.

Notes on the project

The first part of this project was developed during the 2000-2001 edition of the

Advanced Learning and Research Institute (ALaRI) Master of Engineering in

Embedded System Design, organized by Università della Svizzera italiana sited in

Lugano (CH) in collaboration with Politecnico di Milano and ETH Zürich (CH).

That part of the project was also presented on October 10, 2001 at the Swiss conference

Technology Leadership Day 2001 at the Ecole d’Ingénieurs et d’Architectes de

Fribourg (CH). The presentation, titled «The Smart Card System Project: from “Plastic

Money” to Mobile Transaction Support», was made in collaboration with ing. Luca

Mazzoni.

 Table of Contents IV

Table of Contents

Abstract ..1

1. Introduction ..2

1.1. WHY WE DO NEED SECURITY AND CRYPTOGRAPHY...2

1.2. CRYPTOGRAPHIC ALGORITHMS...3

1.2.1. The symmetric key algorithms..3

1.2.2. The public key algorithms ..3

1.2.3. The Diffie-Hellman protocol ..4

1.3. AUTHENTICATION ALGORITHMS..4

1.4. THE IETF IPSEC PROTOCOL SUITE..5

1.4.1. The concept of IPSec Security Association ..6

1.4.2. The Transport and the Tunnel modes...7

1.4.3. IKE: the key exchanging and the algorithm negotiation mechanisms.........................9

1.4.4. The Security Policy Database (SPD) ...14

1.4.5. The Security Association Database (SAD)...14

1.4.6. Adding AES to IPSec ..14

1.4.7. Some notes about the available IPSec – IKE documentation14

1.5. NETWORK ATTACKS..15

2. Description of the global system..16

2.1. THE HARDWARE..16

2.2. THE SOFTWARE...17

2.3. SYSTEM USAGE SCENARIOS...17

2.3.1. The simplest VPN scenario: two users communicating through Internet..................18

2.3.2. A more complex VPN scenario: a mobile user connected to his company’s network

through Internet..19

 Table of Contents V

2.3.3. Data tunneling between two gateways ...21

3. The security policy ...22

3.1. THE KEY EXCHANGE MECHANISM: CREATION OF SAS...22

3.1.1. Phase 1 Key exchange – ISAKMP SA ..22

3.1.2. Phase 2 key exchange – IPSEC (AH-ESP) SA ...24

3.2. ALGORITHMS...25

3.2.1. Public Key Elliptic Curve Criptography..25

3.2.2. Simmetric Key AES (Rijndael) Criptography...25

3.2.3. Hash Algorithms...26

3.2.4. Authentication Algorithms (HMAC)...26

3.2.5. Algorithm negotiation ..26

3.3. SUPPORT FOR A CONCEPTUALLY INFINITE NUMBER OF SAS ..27

3.3.1. Smart card SA database ...27

3.3.2. AES session key ..28

3.3.3. Diffie-Hellman secret ...30

3.4. AN IKE-IPSEC SECURITY POLICY EXAMPLE: THE CASE OF A MOBILE USER (“ROAD

WARRIOR”) ...31

3.4.1. IKE phase 1 ..31

3.4.2. IKE phase 2 ..32

3.4.3. SA Protocol selection ...33

4. The smart card – IPSec software interface...34

4.1. COMMANDS...34

4.1.1. IPSec to smart card commands..34

4.1.2. Smart card to IPSec commands ...39

4.1.3. Command table ..41

4.1.4. Error codes...43

4.2. SOFTWARE COMMUNICATION PROTOCOL..44

4.2.1. Command Format A (1 word) ..44

 Table of Contents VI

4.2.2. Command Format B (1+n word) ...45

4.2.3. Command Format C (1+1+n words)...45

4.2.4. Command format tables ...46

4.3. THE COMMUNICATION FUNCTION..47

5. Writing the software interface C++ code ...48

5.1. UML CLASS DIAGRAM ..49

5.2. TESTING METHODS..51

5.3. THE SMART CARD SOFTWARE DRIVER...51

5.3.1. SA swap policy ...51

5.3.2. Synchronization issues ...51

5.3.3. Data structures...52

5.3.4. How the driver works ...54

5.3.5. How IPSec should interact with the driver ..55

6. The crypto-processor used on a router: study of the optimal SA cache dimension57

6.1. REFERENCE SYSTEM..57

6.2. SIMULATION DATA ..60

6.3. NUMBER OF OPENED SA..61

6.4. CACHE DIMENSION STUDY WITHOUT CONSIDERING THE CRYPTO-PROCESSOR DELAYS........68

6.4.1. Space needed for the SAC ..68

6.4.2. Designing the simulation..69

6.4.3. The simulation program...70

6.4.4. The results of the simulations...74

6.4.5. Reuse of each cache entry ..86

6.4.6. Using a different cache replace policy...89

6.4.7. Taking into account the SA creation phase..89

6.4.8. Considering the SAs created as in “IKE Phase 2 – quick mode”..............................91

6.5. SIMULATING THE DELAY INTRODUCED BY THE CRYPTO-PROCESSOR...................................93

6.5.1. Computation of the delays..93

 Table of Contents VII

6.5.2. Designing the simulation..98

6.5.3. The simulation program...99

6.5.4. The results of the simulations...102

6.5.5. Considering the behavior of IKE Phase 2 in quick mode ..112

6.6. ADDING THE DELAYS DUE TO THE SA CREATION PHASE..115

6.6.1. Description of the delays introduced by the IPSec SA creation phase115

6.6.2. Conclusions about the SA creation delays ...120

6.7. TECHNICAL DETAILS RELATED TO THE SIMULATIONS..120

6.8. CHOICHING THE OPTIMAL CACHE DIMENSION..121

6.9. RESULTS VALIDATION ...121

7. Conclusions ..123

8. Possible future improvements of the system..124

8.1. TESTING AND VERIFICATION OF THE SOFTWARE INTERFACE..124

8.2. FURTHER STUDIES ABOUT THE SA CACHE...124

Bibliography...125

Appendix A. The smart card interface code ..128

A.1. SC_DRIVER.H ..128

A.2. SC_DRIVER.CPP...130

Appendix B. Cache behavior simulation without delays...144

Appendix C. Cache behavior simulation considering the crypto processor delays...................154

Appendix D. Network timing evaluation...164

 List of figures VIII

List of figures

Figure 1.1: ESP in transport mode ...7

Figure 1.2: ESP in tunnel mode ...8

Figure 1.3: AH in transport mode ..8

Figure 1.4 AH in tunnel mode..9

Figure 1.5: IKE Phase 1 exchange ...10

Figure 1.6: IKE Phase 2 “quick mode” exchange ...12

Figure 1.7: creation of an IPSec SA with Pluto ...13

Figure 2.1: representation of the considered system..16

Figure 2.2: VPN scenario – 2 clients connected on a VPN through Internet.....................................18

Figure 2.3: Client connected to his company’s internal network in a secure way using Internet......19

Figure 2.4: data tunneling between two gateways ...21

Figure 5.1: UML class diagram of the system ...49

Figure 5.2: UML class diagram of the sC_driver class..50

Figure 5.3: UML sequence diagram of the system ..50

Figure 5.4: the scSlot structure...53

Figure 5.5: the saInfo structure ..53

Figure 5.6: the sc data structure ...54

Figure 5.7: the saArray data structure..54

Figure 6.1: IPSec router reference system ...58

Figure 6.2: internal system representation ...59

Figure 6.3: first few lines of the data file ...60

Figure 6.4: number of opened SAs over time ..62

Figure 6.5: SA creation distribution over 1s intervals ...63

Figure 6.6: SA creation distribution over 1s intervals when a 30min. timeout is set on unused SAs64

Figure 6.7: SA creation distribution over 1s intervals when the TCP FIN packets are used for

closing the SAs...64

 List of figures IX

Figure 6.8: SA creation distribution over 1s intervals when a 30min. timeout on the unused SAs is

set and the SA TCP FIN packets are used for closing the SAs..65

Figure 6.9: reuse of the SAs before being closed...65

Figure 6.10: reuse of the SAs before being closed when a 30min timeout on the unused SAs is set66

Figure 6.11: reuse of the SAs before being closed using the TCP FIN packets for closing the SAs.66

Figure 6.12: reuse of the SAs before being closed when a 30min timeout on the unused SAs is set

and using the TCP FIN packets for closing the SAs..67

Figure 6.13:SADel structure ...71

Figure 6.14: SACel structure ..71

Figure 6.15: SAD array definition ..71

Figure 6.16: SAC array definition ..72

Figure 6.17: the SAD array...72

Figure 6.18: the SAD array...72

Figure 6.19: dataT structure ...72

Figure 6.20: simulation results over time with a 64-entry cache ...76

Figure 6.21: simulation results over time with a 128-entry cache ...77

Figure 6.22: simulation results over time with a 256-entry cache ...78

Figure 6.23: simulation results over time with a 512-entry cache ...78

Figure 6.24: simulation results over time with a 64-entry cache, considering a 30min. timeout on the

unused SAs...80

Figure 6.25: simulation results over time with a 128-entry cache, considering a 30min. timeout on

the unused SAs...81

Figure 6.26: simulation results over time with a 256-entry cache, considering a 30min. timeout on

the unused SAs...82

Figure 6.27: simulation results over time with a 128-entry cache, using the TCP FIN packets for

closing the SAs...83

Figure 6.28: simulation results over time with a 256-entry cache, using the TCP FIN packets for

closing the SAs...84

Figure 6.29: simulation results over time with a 128-entry cache, when a 30min. timeout on the

unused SAs is set and using the TCP FIN packets for closing the SAs.....................................85

 List of figures X

Figure 6.30: simulation results over time with a 256-entry cache, when a 30min. timeout on unused

SAs is set and using the TCP FIN packets for closing the SAs ...86

Figure 6.31: reuse of each cache entry before being discarded on a 128-entry cache87

Figure 6.32: reuse of each cache entry before being discarded on a 256-entry cache88

Figure 6.33: reuse of each cache entry before being discarded on a 128-entry cache, when a 30min.

timeout on the unused SAs is set..88

Figure 6.34: simulation results over time with a 108-entry cache ...90

Figure 6.35: simulation results over time with a 236-entry cache ...90

Figure 6.36: SA creation distribution over 1s intervals when IKE Phase 2 quick mode procedure is

used for opening the SAs ...93

Figure 6.37: the dataT structure ...99

Figure 6.38: throughput obtained using a 64-entry cache and an AES hardware running at 50MHz

..104

Figure 6.39: throughput obtained using a 256-entry cache and an AES hardware running at 50MHz

..105

Figure 6.40: throughput obtained using a 64-entry cache and an AES hardware running at 55MHz

..106

Figure 6.41: throughput obtained using a 128-entry cache and an AES hardware running at 55MHz

..106

Figure 6.42: throughput obtained using a 256-entry cache and an AES hardware running at 55MHz

..107

Figure 6.43: throughput obtained using a 64-entry cache and an AES hardware running at 60MHz

..108

Figure 6.44: throughput obtained using a 128-entry cache and an AES hardware running at 60MHz

..108

Figure 6.45: throughput obtained using a 256-entry cache and an AES hardware running at 60MHz

..109

Figure 6.46: throughput obtained using a 64-entry cache and an AES hardware running at 70MHz

..110

 List of figures XI

Figure 6.47: throughput obtained using a 128-entry cache and an AES hardware running at 70MHz

..110

Figure 6.48: throughput obtained using a 108-entry cache and an AES hardware running at 60MHz

..112

Figure 6.49: throughput obtained using a 128-entry cache and an AES hardware running at 60MHz

– SA creation as in IKE Phase 2 Quick Mode..113

Figure 6.50: throughput obtained using a 256-entry cache and an AES hardware running at 60MHz

– SA creation as in IKE Phase 2 Quick Mode..114

Figure 6.51: throughput obtained using a 108-entry cache and an AES hardware running at 60MHz

– SA creation as in IKE Phase 2 Quick Mode..114

Figure 6.52: average reply time for each pair of peers...117

Figure 6.53: average reply time between each pair of peers with the part of the ordinate axe between

0 and 3 magnified...118

Figure 6.54: minimum reply time between each pair of peers...119

Figure 6.55: maximum reply time between each pair of peers ..119

Figure 6.56: throughput obtained using a 128-entry cache and an AES hardware running at 60MHz

with a different set of data..122

 List of tables XII

List of tables

Table 3.1: IKE Phase 1 proposals for the “Road Warrior” network ordered by preference..............32

Table 3.2: IKE Phase 2 proposals for the “Road Warrior” network ordered by preference..............33

Table 4.1: table of the command provided by the smart cards for IPSec ..42

Table 4.2: table of the command provided by IPSec for the smart card ..43

Table 4.3: error codes...44

Table 4.4: A command format..44

Table 4.5: B command format – header ...45

Table 4.6: B command format – data ...45

Table 4.7: C command format – header...45

Table 4.8: C command format – data, 1st part ..45

Table 4.9: C command format – data, 2nd part ...46

Table 4.10: format table of the “IPSec to smart card” commands...46

Table 4.11: format table of the “smart card to IPSec” commands...47

Table 6.1: memory space needed in the SAC for each ISAKMP SA ..69

Table 6.2: memory space needed in the SAC for each IPSec SA..69

Table 6.3: space needed for the SAC depending on the number of entry chosen..............................69

Table 6.4: encryption timings for different AES hardware clock rates ...96

 Abstract 1

Abstract

Security in a network environment is a very important requirement in many of the

applications being developed today. This project’s objective is to study the software

interface needed for using a smart-card-like crypto-processor on a system running the

IPSec protocol.

Security in such systems is becoming important as the use of smart cards is being

increasingly adopted by the industry. In addition to that, with the increasing networking

and openly interconnected environments, new dimensions are added to the security

models. As the world head towards heterogeneous computing, security issues between

different devices are becoming increasingly important. There need to be mechanisms in

place to ensure that the transfer of information is carried out in a secure way. On the

other side, an accurate study of the crypto-systems’ performance is needed to allow

them supporting the performance required in modern network environments.

Chapter 1 Introduction 2

1. Introduction

1.1. Why we do need security and cryptography

In today’s world where our lives are becoming increasingly based on computers and

information transmission, being able to store and transmit data in a secure way has

became extremely important. E-commerce is a typical example of an application in

which more security (data protection, authentication, and certification) is needed, but it

is not the only one. For example we can think about the security issues in dealing with

more common applications; such as, conversing on mobile, protecting sensitive

information contained in medical smart cards, or simply sending confidential e-mails.

In addiction, having increasing numbers of companies distributed all over the world, it

has became exceedingly important to protect information sent between the various seat

of the same company or, in other words, to create virtual private networks (VPN).

So, what can cryptography do to solve these kinds of problems? Cryptography can be

used to protect and authenticate data to allow them to be stored and/or transmitted in the

securest way possible.

With the advance of hardware in the last few years, it is becoming easier to break

cryptographic codes generated by older encryption algorithms. A cryptographic code is

said to be broken when someone is somehow able to read the information contained in it

without being authorized (i.e. having the key in a legal way). Therefore new

cryptographic algorithms have been developed taking into account their possible uses in

emerging applications. Applications such as embedded systems like smart cards, cards

where some memory and a processor are provided. This has added consequences in that

these new algorithms should provide the possibility to run on low power and with high

performance on small processors, while allowing a high level of data protection.

Chapter 1 Introduction 3

1.2. Cryptographic algorithms

There are two kinds of cryptographic algorithms, the symmetric and the public key

algorithms. The former ones are faster and very secure, but need to have a pre-shared

secret key. The latter ones are slower but not less secure (if the right key-dimension is

chosen) and do not need to have a pre-shared secret key. A brief description of the two

algorithm classes and a presentation of the Diffie-Hellman protocol are discussed

below.

1.2.1. The symmetric key algorithms

These types of algorithms work by using a pre-shared secret key; essentially, some

transformations involving that key are applied to the data to be codified. Some different

working patterns exist for these algorithms, based on the application for which they

have to be used. For example there is the CBC mode that is suitable for applications in

which big blocks of data must be transmitted [MOV, section 1.5].

The most widely used of this class of algorithms is triple-DES (Digital Encryption

Standard), a variation of the old (1977) DES. A new cryptographic algorithm called

AES (Advanced Encryption Standard) was selected from competing candidates by

NSA, replacing the triple-DES. In the near future AES will probably become the de-

facto standard, as triple-DES is currently.

1.2.2. The public key algorithms

These kinds of algorithms solve the problem of having a pre-shared key by using

asymmetric cryptography techniques. Two keys for every peer are needed, one that is

called private and that is known only by the owner, and another called public and

known to everyone that wants to communicate with that subject. Some transformations,

based on the public key, are applied to every communication directed to that subject.

This makes the data inaccessible to everyone that does not have the private key. As a

matter of fact the inverse transformations cannot be applied by only knowing the public

key [MOV, section 1.8].

Chapter 1 Introduction 4

Nowadays the most widely used algorithm of this class is RSA, but new algorithms,

such as the ECC (Elliptic Curve Cryptography), have been developed and probably will

become the dominating ones very soon.

1.2.3. The Diffie-Hellman protocol

Diffie-Hellman provides a solution to the key exchange problem by allowing two

parties, never having met in advance or having shared keying material, to establish a

shared key secret by exchanging messages over an open channel. The key is exchanged

in the following way:

• The first peer (A) chooses a random secret called x, does some operations on it

and sends the result (h) to B;

• The second peer (B) chooses a random secret called y, does some operations on

it and sends the result (k) to A;

• B receives h from A and computes the key using h and y

• B receives k from B and computes the key using k and x

The key protection is given by the fact that the operations performed on x and y to

obtain h and k, needs a lot of computational time to be inverted so that eventual third

parties discovering the values of h and k would not anyway be able to discover the

key in a reasonable amount of time.

The operations that can be applied to x and y to obtain h and k can be based either on

elliptic curves or on exponentials in the discrete fields. The former case is based on

the same principles of ECC, while the other is based on RSA.

See [MOV] on section 12.6 and [RHS] for more information about Diffie-Hellman

and the key exchange procedures.

1.3. Authentication algorithms

These types of algorithms are used to certify that the information comes from a certain

person and was not modified by someone else. This can be done by computing a hash

function of the data and applying to that result an encryption algorithm (that can be a

public or a symmetric key one) [MOV, section 1.7]. A hash function is one that, when

Chapter 1 Introduction 5

applied to some data, provides a different brief code for every different packet of data,

or, at least provides equal codes for different data with a really low probability [MOV,

section 1.9].

1.4. The IETF IPSec protocol suite

IPSec is a protocol developed to provide secure communications on untrusted networks

adding some security services to the ISO-OSI network level (i.e. to the IP protocol

layer) [RFC-2401]. It is also the Internet Engineering Task Force (IETF) proposed

standard for “layer 3 real-time communication security.” IPSec can be thought of as a

protocol that operates on top of Layer 3 (IP) but below layer 4 (TCP). This infers that it

encrypts data independently of all others. If packets happen to be lost, the layer 4 sees

only validated information [IEEE-1].

IPSec proposes three different security protocols:

• Authentication Header (AH);

• Encapsulating Security Payload (ESP);

• Internet Key Exchange (IKE).

The first is used to protect the IP headers, while the second is for protecting the content

of the IP datagrams. The third protocol is used to perform the key exchange and the

algorithm negotiation. The first two protocols can be combined in different ways to

offer different levels of security services according to the established system’s security

policy.

The main method used for AH is applying an authentication algorithm on all the

header’s fields that are not changed during the packet transmission1. HMAC-MD5 and

HMAC-SHA1 are the two alternatives proposed [RFC-2402] [RFC-2406] as minimum

requirements for IPSec conformance, but new authentication algorithm such as HMAC-

SHA-256, HMAC-SHA-348, and HMAC-SHA-512 [DRAFT-4] are under

1 Some IP headers’ fields are often changed when the datagrams go through different gateways before

reaching their final destination.

Chapter 1 Introduction 6

development. In addition, there is another required-to-implement authentication

algorithm that is the NULL algorithm: an algorithm that does nothing.

The ESP protocol is implemented by applying an encryption algorithm on the data to be

transmitted, but not on the IP header (except from the case of IPSec tunneling, as

explained later on in this paragraph). The required-to-implement algorithms for IPSec

compliant implementations are triple DES and the NULL algorithm, but, since IPSec

was designed with flexibility and extendibility in mind, other encryption methods, such

as AES, can be added.

Both in AH and ESP a simple and efficient anti-reply mechanism is provided: a

monotonically increasing 32-bit counter is used to implement this feature [RFC-2406].

Anti-reply is a process in which if someone were to intercept one of the packets

exchanged by the two peers that are communicating, he could not use that packet to

reply to one of the two peers to obtain reserved information (such as the symmetric key)

– he would need to know the value of a field that is cryptographically encoded. Anti-

reply is also called “partial sequence integrity”.

So, to summarize:

• AH provides connectionless integrity, data origin authentication, and optional

anti-replying service;

• ESP may provide confidentiality (using encryption) and may also provide

connectionless integrity, data origin authentication, and anti-reply service if used

in tunnel mode as explained later on in this document.

1.4.1. The concept of IPSec Security Association

An association in which either the AH or the ESP protocol (but not both) is used to

communicate, is called IPSec Security Association (IPSec SA). The suffix “IPSec” is

used to distinguish that kind of SAs from the Internet Security Association Key

Management Protocol (ISAKMP) SAs that can be used only for key exchanging and

algorithm negotiation. In this document, unless specified, all the SA-word occurrences

will be related to IPSec SAs.

Chapter 1 Introduction 7

An IPSec Security Association is a one-way association between two peers, so, in order

to have a bi-directional communication channel, the creation of two SAs is needed.

For providing particular protection services, multiple SAs can be employed; this is

called a “SA bundle”. The order of the SA sequence is defined by the security policy,

therefore if both AH and ESP are needed it will be necessary to create two SAs, one for

AH and the other for ESP, so that these two SAs will be “nested” as required by the

security policy.

We can note that, since a strong enough encryption algorithm is used, using ESP can

offer the maximum level of protection available (see the ESP tunnel mode in the next

section), so that nesting AH and ESP SAs seems unnecessary. As a matter of fact, AH is

often seen as an additional, but not useful complication added to IPSec ([IEEE-1],

[IEEE-2]). From what is stated in the IPSec RFCs, the AH protocol seems to have been

kept for backward compatibility purposes.

1.4.2. The Transport and the Tunnel modes

Both tunnel and transport mode can be coupled with the AH or with the ESP protocol.

The use of tunnel mode allows the inner IP header to be protected, concealing the

identities of the (ultimate) traffic source and destination. ESP padding can also be

invoked to hide the real packet’s size.

The Transport mode provides protection only for the upper layer protocols. Hence, by

using ESP, the IP header won’t be protected, while using AH only some selected IP

header fields will be protected. As shown in Figure 1.1, the ESP transport mode protects

the datagram’s data payload, while ESP tunnel mode protects both the IP headers and

the data payload as shown in Figure 1.2.

IP payload IP Header IP payload IP Header IP encrypted payload IP Header

IP payload IP Header

Figure 1.1: ESP in transport mode

Chapter 1 Introduction 8

 new IP
Header

IP payload IP Header

IP payload IP Header

Figure 1.2: ESP in tunnel mode

In the same manner, Figure 1.3 shows the behavior of the AH protocol in transport

mode: the IP header is the only protected (hashed) part there. In Figure 1.4 the behavior

of the AH protocol in tunnel mode is displayed: there, both the IP header and the

payload are protected (hashed). In both the figures the AH field represents the part

added by the AH protocol (hash, SPI, …).

In the four figures shown here, the parts colored in black are the ones protected by

cryptography or hashing; in AH the IP headers are never completely protected (i.e.

some fields are not hashed, as explained before). All four figures are referred to IPSec

used in combination with IP v.4. Slightly different figures can be drawn for IP v.6, since

its structure allows a better IPSec integration. The effects obtained using tunnel and

transport modes are exactly the same for both IP v.4 and IP v.6. The four figures shown

here are only a simplified view of the IP datagrams used for IPSec. More detailed

information about the IPSec modes and the exact composition of the datagrams can be

found in [RFC-2402] and in [RFC-2407].

IP payload IP Header AH

IP payload IP Header

Figure 1.3: AH in transport mode

Chapter 1 Introduction 9

IP payload original IP Header AH

IP Header

new IP Header

IP payload

Figure 1.4 AH in tunnel mode

The (ESP) tunnel mode was primarily thought for being used in gateways or routers.

1.4.3. IKE: the key exchanging and the algorithm negotiation mechanisms

As stated before, a mechanism for symmetric key exchange and for algorithm

negotiation is needed. It is important to note that the keys have to be exchanged in a

secure way while the algorithm negotiation can be done in a non-protected way, which

is the fundamental principle of cryptography (the strength of a cryptography algorithm

is not given by hiding the algorithm itself, but by hiding the key). There is also a

provision for protected negotiation in order to hide the identity of the peers or some

other private information.

All mechanisms related to the creation of an IPSec SA must be done at the application

layer and are described by the Internet Key Exchange (IKE) protocol. IKE is the

interpretation of the Internet Security Association And Key Management Protocol

(ISAKMP) in the IPSec domain. Therefore IKE is said to be the Domain of

Interpretation (DoI) of ISAKMP. ISAKMP is a protocol describing how key exchange

and algorithm negotiation is done over the Internet network.

The creation of an IPSec SA is completed in two phases, first an ISAKMP SA between

the two peers is created (phase 1), and then that ISAKMP SA is used to negotiate the

information about the IPSec SAs that have to be created (phase 2) [RFC-2409].

ISAKMP SAs are nothing more than a kind of secure tunnel for the creation of IPSec

SAs.

Chapter 1 Introduction 10

Initiator Responder ISAKMP phase 1 header + SA negotiation
payload

ISAKMP phase 1 header + SA negotiation
payload

ISAKMP header + Key exchange payload
[+ hash] + initiatior ID and NONCE payload
encrypted w ith the receiver public key

ISAKMP phase 1 header + Key exchange
payload [+ hash] + responder ID and
NONCE payload encrypted w ith the initiator
public key

ISAKMP phase 1 header encrypted w ith the
symmetric key + hash of the header using
the symmetric key

ISAKMP phase 1 header encrypted w ith
the symmetric key + hash of the header
using the symmetric key

Figure 1.5: IKE Phase 1 exchange

IKE provides several methods for the phase 1 negotiation with different levels of

protection. The key exchange mechanism is based on the Diffie-Hellman algorithm. In

Figure 1.5, one of the phase 1 negotiation method is shown: here a public key

encryption algorithm is used for authentication, while the secure channel for the phase 2

is created during the second message exchange between the two peers, by using a

symmetric encryption algorithm. The algorithms to be used are negotiated during the

Chapter 1 Introduction 11

first message exchange between the initiator2 and the responder: first the initiator sends,

using the SA negotiation payload field, several complete algorithm proposals as defined

by the system security policy, and then the responder puts the only proposal that it could

accept in conformance with its security policy database (see section 1.4.4) into the same

field of its reply message.

A phase 2 “quick mode” exchange is shown in Figure 1.6. The phase 2 accomplishes

the creation of a pair of independent SAs, one for each communication direction. A new

pair of IPSec SAs is created by exchanging only three messages: 1) the Initiator

requests a new pair of IPSec SAs proposing the encryption and authentication

algorithms for use in each of those SAs payload, 2) the Responder may accept one of

the initiator’s proposals by always using the SA payload field, and 3) the Initiator

confirms the creation of the two IPSec SAs. The last message exchange is done in a

symmetric encrypted form using the recently exchanged key. After that message, the

two peers are able to communicate through the two secure (unidirectional) channels

created during that negotiation. The Initiator of phase 2 can be any of the two peers

irrespective of which of the two was the Initiator during the phase 1.

2 The initiator is the peer that propose to start an ISAKMP SA negotiation, while the other peer is called

“responder”

Chapter 1 Introduction 12

Initiator Responder

ISAKMP phase 2 header encrypted w ith
ISAKMP symmetric key+ hash + SA
negotiation payload + Nonce + key echange
payload

ISAKMP phase 2 header encrypted w ith
ISAKMP symmetric key+ hash + SA
negotiation payload + Nonce + key echange
payload

ISAKMP phase 2 header encrypted w ith
ISAKMP symmetric key+ has h

Figure 1.6: IKE Phase 2 “quick mode” exchange

Figure 1.7 shows the creation of an IPSec SA using the standard triple-DES and RSA

algorithms. The first part of the figure represents the phase 1 negotiation, i.e. the

creation of an ISAKMP SA, while the second part shows the IKE phase 2, i.e. the

creation of an IPSec SA. This SA creation sequence is taken from the log file created by

the FreeS/Wan IKE – IPSec implementation while it is running. The channel was

created between two PCs in the ALaRI lab. FreeS/Wan is a reference IPSec

implementation [FSWAN] we used to verify our understanding of the IPSec RFCs.

Chapter 1 Introduction 13

Apr 24 16:38:57 alari011 Pluto[565]: "affsts" #8: initiating Main Mode

Apr 24 16:38:57 alari011 Pluto[565]: | sending:

Apr 24 16:38:57 alari011 Pluto[565]: | 90 de 64 6 c 77 45 48 2c 00 00 00 00 00 00 00 00

…………

Apr 24 16:38:57 alari011 Pluto[565]: | ICOOKIE: 90 de 64 6c 77 45 48 2c

Apr 24 16:38:57 alari011 Pluto[565]: | RCOOKIE: 94 5c 12 c3 94 74 a4 68

Apr 24 16:38:57 alari011 Pluto[565]: | peer: c3 b0 b6 92

Apr 24 16:38:57 alari011 Pluto[565]: | sending:

Apr 24 16:38:57 alari011 Pluto[565]: | 90 de 64 6 c 77 45 48 2c 94 5c 12 c3 94 74 a4 68

…………

Apr 24 16:38:57 alari011 Pluto[565]: | *received 18 0 bytes from 195.176.182.146:500 on eth0

Apr 24 16:38:57 alari011 Pluto[565]: | 90 de 64 6 c 77 45 48 2c 94 5c 12 c3 94 74 a4 68

…………

Apr 24 16:38:57 alari011 Pluto[565]: | encrypting:

Apr 24 16:38:57 alari011 Pluto[565]: | 09 00 00 0 c 01 00 00 00 c3 b0 b6 90 00 00 01 04

…………

Apr 24 16:38:57 alari011 Pluto[565]: | sending:

Apr 24 16:38:57 alari011 Pluto[565]: | 90 de 64 6 c 77 45 48 2c 94 5c 12 c3 94 74 a4 68

…………

Apr 24 16:38:57 alari011 Pluto[565]: | *received 30 0 bytes from 195.176.182.146:500 on eth0

Apr 24 16:38:57 alari011 Pluto[565]: | 90 de 64 6 c 77 45 48 2c 94 5c 12 c3 94 74 a4 68

…………

Apr 24 16:38:57 alari011 Pluto[565]: "affsts" #8: S TATE_MAIN_I4: ISAKMP SA established

…………

Apr 24 16:38:58 alari011 Pluto[565]: "affsts" #9: initiating Quick Mode

RSASIG+ENCRYPT+TUNNEL+PFS

Apr 24 16:38:58 alari011 Pluto[565]: | encrypting:

Apr 24 16:38:58 alari011 Pluto[565]: | 01 00 00 1 8 af 7c 6e a8 19 9c 3d 3e 5d 50 9f f7

…………

Apr 24 16:38:58 alari011 Pluto[565]: | sending:

Apr 24 16:38:58 alari011 Pluto[565]: | 90 de 64 6 c 77 45 48 2c 94 5c 12 c3 94 74 a4 68

…………

Apr 24 16:38:58 alari011 Pluto[565]: | *received 26 0 bytes from 195.176.182.146:500 on eth0

Apr 24 16:38:58 alari011 Pluto[565]: | 90 de 64 6 c 77 45 48 2c 94 5c 12 c3 94 74 a4 68

…………

Apr 24 16:38:58 alari011 Pluto[565]: | encrypting:

Apr 24 16:38:59 alari011 Pluto[565]: | 00 00 00 1 8 b6 d0 c2 c8 c1 e7 b3 65 0f 2b b9 31

Apr 24 16:38:59 alari011 Pluto[565]: | 87 f8 f6 b c d4 cc 6c 9b

Apr 24 16:38:59 alari011 Pluto[565]: | sending:

Apr 24 16:38:59 alari011 Pluto[565]: | 90 de 64 6 c 77 45 48 2c 94 5c 12 c3 94 74 a4 68

…………

Apr 24 16:38:59 alari011 Pluto[565]: "affsts" #9: S TATE_QUICK_I2: sent QI2, IPsec SA established

Figure 1.7: creation of an IPSec SA with Pluto

Also note that the KEY exchange can be done in a manual or in an automatic mode. The

former consists of manually requesting a new key and should be used only on few

occasions, for example during testing or in a very small VPN. The latter consists of

automatically updating the keys when a 32-bit counter that is incremented every time

Chapter 1 Introduction 14

the SA is used, reached its maximum; this is the mode that offers more reliability and

security.

1.4.4. The Security Policy Database (SPD)

The Security Policy Database specifies what services are to be offered to each possible

pair basing on its IP address and in what fashion [RFC-2401, section 4.4.1], so the SPD

will contain a list of IP address with the corresponding security policies to be adopted.

The SPD must be consulted during the processing of all traffic, including non-IPSec

traffic.

1.4.5. The Security Association Database (SAD)

The Security Association Database is a database in which stores all the information

related to each opened SA [RFC-2401, section 4.4.3]. Each of them has to be univocally

identified by the destination IP address, the IPSec protocol type, and the SPI, a 32-bit

value used to distinguish among different SAs terminating at the same destination and

using the same IPSec protocol.

1.4.6. Adding AES to IPSec

As there were no stable publicly available documents from the Internet Engineering

Task Force (IETF) about this aspect of the project, our work is based on draft

documents ([DRAFT-2] and [DRAFT-3]) and thus may have some interoperability

problems with different IPSec (and IKE) implementations. This is due to the fact that in

some cases we were forced to make certain specific choices not supported by any

official documentation (see chapter 3).

1.4.7. Some notes about the available IPSec – IKE documentation

The (many) available RFCs are sometimes confusing giving the possibility of

misunderstandings and different interpretations. This could cause interoperability

problems as explained in a NIST document [NIST-1].

Chapter 1 Introduction 15

IKE is really complex to cover a high number of different use cases, and this causes

some interpretation difficulties [IEEE-1].

1.5. Network attacks

Here a brief explanation of some kinds of computer attack is given. More detailed

information can be found for example in [COM-1].

Network attacks are actions performed to take the control of a system (or a sub-

network), to extract data from that system, or to make the system unusable. Network

attacks are of increasing concern because of the number of organizations and users on

the Internet and their increasing dependency on the Internet to carry out day-to-day

business.

Network attacks can be done in many ways, often following some known procedures.

A very common kind of attack is the one called Denial of Service (DoS): here multiple

systems are used to attack one or more victim systems. The goal of that kind of attack is

to saturate the resources of the victim systems.

Other attacks can be specifically studied for routers: intruders can use poorly secured

routers as platforms for generating attack traffic at other sites; routers can easily become

victims of DoS attacks being designed to pass a large amount of data through them, but

without the capability to handle the same amount of traffic directed to them.

There are also systems called “intrusion detection” systems: these are merely software

developed to detect known operational patterns applied on the network. Usually once an

attack has been discovered, intrusion detection systems deny these operation to continue

and also advise the system administrator. The main problems associated with these

types of software are due to the fact that new attack techniques are very often

discovered, so that not all the attacks are recognized. On the other hand, these types of

software can easily recognize some normal (non-malicious) operations performed on the

system as attacks.

Chapter 2 Description of the global system 16

2. Descript ion of the global system

The system under development in the ALaRI lab is composed of a smart card (or, more

generally speaking, a crypto-processor) implementing some security functionality as

described in section 2.1, and a host on which IPSec and IKE are installed and running.

The system has to be able to support communications at 50Mbit/s. This system is

connected to a network (i.e. Internet) and has to be able to communicate with other

IPSec compliant systems that possibly support AES and ECC as described in section 2.3

See Figure 2.1 for a graphical representation of the system.

Applications

IKE

IPSec

S/C reader

Figure 2.1: representation of the considered system

2.1. The hardware

The host on which IPSec and IKE are running can either be a PC or a different kind of

machine (for example a gateway or a firewall), depending on the specific application of

the system.

Chapter 2 Description of the global system 17

The smart card hardware interface is undefined and outside the scope of the project. It is

assumed that the data transmission rate of the interface is enough to support the

50Mbit/s throughput.

The smart card must provide encryption and decryption of data packets using the

symmetric AES algorithm and the public key ECC algorithm respectively, in addition to

other services needed for the security associations’ management. The key point is that

both the symmetric and the private key of the public key cryptography algorithm should

never exit from the smart card. Depending on the user scenario, it may not be necessary

to hide both keys. In section 2.3 examples are provided as to how this feature can be

used.

The protection of the keys is the main motivation that makes it necessary to implement

the cryptographic algorithms in the smart card.

Slightly different requirements will be considered in chapter 6.

2.2. The software

The software running on the host consists of an implementation of the IKE protocol for

key exchange and an implementation of the IPSec protocol. Both of these should be

suited to take advantage of the smart card’s functionality.

2.3. System usage scenarios

The system can be used in many different ways. One way that the smart card associated

with IPSec can be used is to create various kinds of Virtual Private Networks (VPN) or

to create a secure communication channel between two gateways. A VPN is a private

network created over a public network (e.g. internet) using some security systems to

provide confidentiality and authentication. Here follows the description of some of

these systems.

Chapter 2 Description of the global system 18

2.3.1. The simplest VPN scenario: two users communicating through

Internet

Applications

IKE

IPSec

Applications

IKE

IPSec

Applications

IKE

IPSec

Applications

IKE

IPSec

Applications

IKE

IPSec

Applications

IKE

IPSec

Internet

Virtual secure channel between
the two PCs

Figure 2.2: VPN scenario – 2 clients connected on a VPN through Internet

In this scenario a secure communication channel between two peers is established over

an untrusted network like the Internet. The channel is called “virtual” because the

Internet connectionless standard is still used, so no real permanent communication

channel is provided.

In Figure 2.2, two PCs are represented but these can be substituted with other kinds of

machines such as embedded systems, mobile devices, handheld devices, etc.

In this scenario the main use of the smart card is to provide authentication of the two

users, so it is important that the ECC private key is stored in a protected manner in the

smart card. This service is already provided by smart cards currently available on the

Chapter 2 Description of the global system 19

market, but in these systems the private key has to exit from the smart card because the

cryptography algorithms are not contained there. The smart card also provides other

services such as symmetric encryption and authentication.

2.3.2. A more complex VPN scenario: a mobile user connected to his

company’s network through Internet

Applications

IKE

IPSec

Applications

IKE

IPSec

Applications

IKE

IPSec

Internet

Virtual secure
channel

Firewall

IKE

IPSec

Company’s LAN

Figure 2.3: Client connected to his company’s internal network in a secure way using Internet

As shown in Figure 2.3, the user is connected to the company’s internal network via the

Internet; this scenario is often called “road warrior”. The company’s LAN is protected

by a firewall. In this case the use of such a system allows both users authentication and

secure communication. Here the user is reliably connected to the company’s LAN as if

Chapter 2 Description of the global system 20

he was physically connected to the company’s LAN3. In this case the secure channel is

opened between the user’s PC (or other kind of machine) and the firewall.

Here the smart card provides authentication when used on the PC side, and both

authentication and data protection when used on the firewall side, so in this case it is

important that both keys are kept secret.

Figure 2.4 shows that more than one smart card can (and should) be used at the firewall

side to provide better performance. The smart card can also be substituted by a similar,

but more powerful, crypto-processor, to create even better performance than the smart

card alone as shown in chapter 6. Later in this document it is shown that network

configurations such as the one here illustrated can expose the system to DoS attacks, if

not carefully configured.

3 This is not totally true: cryptography is only able to provide a certain level of security, depending on the

adopted algorithm and on the key size, but it cannot guarantee, as any other protection mechanism, the

total security of the data.

Chapter 2 Description of the global system 21

2.3.3. Data tunneling between two gateways

Virtual secure
channel

Gateway

IKE

IPSec

Gateway

IKE

IPSec

Gateway

IKE

IPSec

Gateway

IKE

IPSec

Untrusted
network

subnetworks

subnetworks

Figure 2.4: data tunneling between two gateways

In this case a secure channel is created to protect data transmitted between the two

gateways, enabling multiple secure communications from different sub-networks at one

time.

In this scenario, the most important service provided by the smart card is data

encryption.

On gateways as well as on firewalls multiple smart cards could and should be used to

enhance performance, or, as in the previous case, a crypto-processor can be utilized

even more effectively than just the smart card.

Chapter 3 The security policy 22

3. The securi ty pol icy

Before start working on the design of a security system, it is necessary to specify the

level of security we need. This section, where the desired system’s behavior is

described, accomplishes that needing.

In the following subsection we describe the algorithms to be used during the key

negotiation and during the communications, and how to use these algorithms. The key

exchange mechanisms, and the support that the smart card should provide for IKE and

IPSec are also discussed.

Since security is highly connected with the system’s performance, some consideration

about the latter topic are also provided in this part of the present document.

3.1. The key Exchange mechanism: creation of SAs

To create a pair of mono-directional IPSEC SAs (see the section 3.1.2 for further details

about this), the following steps are needed ([RFC-2409], section 8):

• Phase1 : do a main mode exchange to create an ISAKMP SA

• Phase 2: do a quick mode exchange to establish the needed IPSec SAs (at least 2

mono-directional) (phase 2)

• delete the ISAKMP SA and its associated states.

3.1.1. Phase 1 Key exchange – ISAKMP SA

IKE Phase 1 creates a security channel to exchange SA information. This channel

consist of a special bi-directional SA that is called ISAKMP SA. That security

association is used only for creating new mono directional IPSec SAs and eventually it

can be deleted. The maximum lifetime for an ISAKMP SA is of 24 hours.

According to [RFC-2408] and [RFC-2409], the key exchange policy has to be re-

negotiated every time a new ISAKMP SA has to be established («The following

Chapter 3 The security policy 23

attributes are used by IKE and are negotiated as part of the ISAKMP Security

Association. […]

encryption algorithm

hash algorithm

authentication method

information about a group over which to do Diffie-Hellman.

All of these attributes are mandatory and MUST be negotiated. In addition, it is

possible to optionally negotiate a pseudo-random function ("prf").»).

The versions of Phase 1 negotiation techniques based on public key encryption (e.g.

Phase 1 authenticated with Public Key encryption) will be implemented in our system

through Elliptic Curve Cryptography (ECC).

The section of RFC 2409 quoted above and interpreted in our context means that each

time it is necessary to exchange an ISAKMP key (that is to create a new ISAKMP SA),

the tables related to a specific ECC curve have to be re-computed. This is necessary

unless the curve’s parameters used during the previous ECC-based computation are the

same as the one to be used for the new one.

We can also note that, once an ISAKMP SA has been created, we can use it for the

creation of many other IPSec SAs by repeating IKE phase 2. As a matter of fact the

PFS4 mechanism ensures that the generated keys are independent. Therefore very few

ECC encryption/decryption operations may be really needed (see [RFC-2409], section

5.5).

The ECC curve information are used in all the ECC based key exchanges, that is at least

one time for each phase 1 negotiation and sometimes in phase 2.

According to [RFC-2408] section 4.3, security association modification within IKE is

accomplished by creating a new SA and initiating communications using that new SA.

Deletion of the old SA can be done anytime after the new SA is established.

Modification of an ISAKMP SA follows the same procedure as deletion of an ISAKMP

SA.

4 Perfect Forward Secrecy

Chapter 3 The security policy 24

According to [DRAFT-1] we have thirteen possible default groups for elliptic curve

Diffie-Hellman that must be supported.

3.1.1.1. Phase 1 Key exchange procedure:

According to [RFC-2409] section 5, the following key exchange procedures are used:

• Phase 1 Authenticated With Signatures

• Phase 1 Authenticated With Public Key Encryption

o Main mode

o Aggressive mode

• Phase 1 Authenticated With a Revised Mode of Public Key Encryption

• Phase 1 Authenticated With a Pre-Shared Key

3.1.2. Phase 2 key exchange – IPSEC (AH-ESP) SA

The phase 2 ([RFC-2409], section 5.5) is used to exchange keys for IPSec sessions

when an ISAKMP SA has already been created.

According to [RFC-2401] section 4.1, a SA is unidirectional. This means that to

establish a standard bi-directional connection, two SAs have to be created.

If both the AH and the ESP protocols are applied to a traffic stream, two SAs (for each

direction) will be created. Those SAs will be nested as specified in the security policy

database.

In our system the IPSec SAs use the fast symmetric key encryption algorithm called

AES for protecting the data. To prevent AES context switching inside the smart card

(interleaving data blocks belonging to different SAs), the IPSec process on the host

should send consecutive data blocks related to a single SA. This is recommended for

optimizing the performance of the system, since AES works best on continuous streams

of data.

Modification of an IPSec SA (phase 2 negotiation) follows the same procedure as the

creation of a new IPSec SA, that is: a new SA is opened, traffic is moved on it and the

old SA is deleted. The creation of the new SA is protected by the existing ISAKMP SA,

so that there is no relationship between the old and the new IPSec SAs. A protocol

Chapter 3 The security policy 25

implementation should begin using the newly created SA for outbound traffic and

continue to support incoming traffic on the old SA until it is deleted or until traffic is

received under the protection of the newly created SA.

3.1.2.1. Phase 2 key exchange mode: the quick mode

There are two possible implementation of the quick mode to be supported (see [RFC-

2409], section 5.5): the base and the normal one. In our system we will always propose

to use the phase 2 normal mode, which guarantees the Perfect Forward Secrecy of the

exchanged keys (if someone discovered the AES key used for communicating the new

keys information, he would not be able to discover the latter).

Using the quick mode, two mono-directional SAs are created, one for each end and the

keys are derived from the information sent by the other peer.

3.2. Algorithms

IPSec RFCs state some required-to-implement algorithms for IPSec compliant

implementations. As stated in section 2.1, our crypto-processor will not support the

RSA and DES algorithms, while it will support the AES and ECC ones. For

compatibility purposes, RSA and ECC will anyway have to be supported by software.

3.2.1. Public Key Elliptic Curve Criptography

For the ECC algorithm it is needed to support key-sizes up to 600 bits (NIST

recommendation).

3.2.2. Simmetric Key AES (Rijndael) Criptography

In the early draft about the use of AES in IPSec [DRAFT-2], it was only required to

support 128 bit-wide keys in CBC mode. In the new version of that draft ([DRAFT-3])

it is stated that both the key dimension and the number of algorithm rounds to be

performed have to be negotiated. It is still not clear what fields of the IKE phase 1 and

phase 2 are to be used for those negotiations.

Chapter 3 The security policy 26

3.2.3. Hash Algorithms

The mandatory to support hash algorithms are MD5 and SHA-1 ([RFC-2402], [RFC-

2406], [RFC-2408]).

3.2.4. Authentication Algorithms (HMAC)

The mandatory to support authentication algorithms are HMAC-MD5 and HMAC-

SHA-1 ([RFC-2402], [RFC-2406], [RFC-2408]); these two HMAC algorithms require

the knowledge of the symmetric key, therefore they have to be implemented in the

smart card.

Those authentication algorithms operate on entire packets of data: it should be

investigated if block or stream implementations are possible.

3.2.5. Algorithm negotiation

During the SA negotiation, the encryption and authentication algorithms have to be

agreed between the two peers. The initiator has to send some complete proposals (e.g.

AES with HMAC-MD5), and the responder can accept one of them or propose a new

one.

In our system a symmetric key for a SA (AES key) can only be exchanged using the

ECC based Diffie-Hellman algorithm. This is the only method allowed by the smart

card. As a matter of fact the key cannot be introduced in any other ways without

exposing the card to security attacks.

Consequently it will not be allowed to use the ECC based Diffie-Hellman algorithm

(and the ECC algorithm) to exchange secrets that are not AES symmetric keys: it would

be possible to generate such a key, but not to retrieve it from the smart card.

According to the previous statements, when the initiator proposes the use of ECC for

key exchanging, it will be able to continue the negotiation only if the responder has the

AES algorithm available; if not, the negotiation has to be closed and restarted using a

public key algorithm different from ECC (e.g. RSA).

The system acting as a responder will be able to accept only proposals corresponding to

the previous conditions. Therefore it will be able to exchange an AES key only using

Chapter 3 The security policy 27

ECC and it will not be able to use ECC for other purposes. If the ECC algorithm is

proposed for key exchanging but the initiator doesn’t have AES available, the

negotiation will be closed, or the null cryptographic algorithm accepted.

The curve parameters for ECC are to be negotiated as indicated in [DRAFT-1].

3.3. Support for a conceptually infinite number of SAs

Due to the fact that the AES keys are never to go out from the smart card, some

information, such as the keys, would have to be stored in a local memory and kept there

for all the SAs lifetime. As we know, the amount of memory we can put in a smart card

(or in a crypto-processor) is really limited so that it is not possible to store there all the

information we need. A solution to that problem is discussed in this section.

3.3.1. Smart card SA database

The number of SAs that the smart card can handle at a given time has an upper bound

due to the limited amount of memory in the smart card itself. Once this limit has been

reached, it is necessary to free some smart card’s memory before creating new SAs.

This can be done storing outside the data related to an active SA (for example the least

recently used one) in a protected form (since the SA symmetric key has to be kept

secret).

This mechanism is very similar to the “paging” technique applied in systems with

virtual memory or to the replacement technique of cache memories: the main difference

with respect to them is that the information stored out of the local memory must be

protected in some way.

The data stored out of the smart card are saved in the host memory.

The swapping between the smart card and the host computer introduces a further data

processing delay, but it gives the smart card access to the host memory and allows a

conceptually unlimited number of opened SAs.

It is up to the IPSec/smart-card interface to manage that possibility in the best way, that

is managing the SAs inside the smart card and freeing some memory position when

Chapter 3 The security policy 28

needed. To reach the maximum efficiency of the system, the SAs to be taken in the

smart card’s memory can be chosen taking into account the following remarks:

• the system administrator should set a limit to the number of SAs using the smart

card, and assign a priority to them;

• the interface between the IPSec implementation and smart the card should

monitor the SA traffic in order to keep the most used SAs inside the smart card;

• the number SAs opened at the same time should be carefully monitored to

prevent DoS attacks. As a matter of fact allowing too many opened SAs can

cause the system to spend more time swapping information between the smart

card and the host than doing useful processing (i.e. data encryption/decryption).

On the other side the smart card has to provide to the host all the functionality needed

for managing the SAs.

The SAs present in the smart card should be stored in a SA database (for example of 16

entries) addressable by an index: the IPSec host has to include it in each service request

sent to the smart card.

To summarize, an entry in the smart card database is needed for each SA that has been

created. That database will be kept in a non-accessible dedicated memory area of the

smart card. When the smart card memory is full, the information related to an existing

SA need to be stored in the host memory to allow the creation of a new SA. The

information to be stored in the host memory, are to be protected through encryption.

When an already created SA needs to be restored in the smart card, the host will pass

the encrypted information to the smart card. Then the smart card will perform a data

integrity check (e.g. through a simple CRC computation), and will store back the

decrypted information in a specified position of the SA database.

The details about the algorithms to be used for implementing the data storage described

above are given in the following subsection.

3.3.2. AES session key

To protect the SA information that have to be stored outside the smart card, AES

encryption can be performed. For that purpose an AES “session” key known only by the

Chapter 3 The security policy 29

smart card can be used. The AES session key must be newly generated each time the

smart card is plugged in the reader.

For obtaining the maximum possible level of security, a 256-bit wide AES key can be

used.

Looking at the contents of the smart card SA-database records, we can see that the only

field that really needs to be protected is the one containing the AES key. For

authenticating the data contained in each smart card SA-database entry, a simple 16-bit

CRC computation seems to be enough. As a matter of fact, we only need a consistency

checking on the stored information and CRC can provide that service allowing very fast

and simple hardware implementations. The result of the CRC computation can be

encrypted together with the AES key.

To summarize, when an entry of the smart card SA-database needs to be stored in the

host memory, first the CRC on the whole entry is computed, then the AES key and the

CRC result are encrypted using the AES session key. At the end the encrypted SA-data

and the other fields contained in the smart card SA-database entry (i.e. the IV and the

AES algorithm settings for that SA) are stored out.

To understand the level of security provided by this solution, we have to take into

account that:

• what is stored in encrypted form outside the smart card is, basically, the

symmetric key that protects one SA;

• when the IPSec automatic key-refresh service (anti-reply service) is active, the

lifetime of each SA cannot in any case exceed either 8 hours or a specified

amount of exchanged data (232 datagrams);

• when the key-refresh is manually performed – and that this procedure is usable

only in very little VPNs – the smart card will be probably able to carry all the

opened SAs in its memory. Only few of the opened SAs will possibly be stored

on the host for a small time.

The AES robustness should anyway guarantee that the keys are protected “as they were

kept in the smart card”. We can note that it would be more convenient for an attacker to

Chapter 3 The security policy 30

try breaking the AES key related to the SA in which he is interested than the session

key, since the keys used for IPSec SAs are usually smaller than the session key.

A special smart card command for refreshing the AES session key must be provided.

Active SAs stored outside the smart card will not be anymore accessible after the

execution of that command: this is because once the session key has been changed, all

the AES keys stored on the host cannot be anymore decrypted. Therefore, when a

session key refresh is needed, the IPSec communication module should monitor the

number of opened SAs that are using the smart card and request that key refresh when

the number of opened SAs is less or equal the number of available smart card SA-

database positions. The technique described above can be used only on very small

systems. A better mechanism should be studied for more complex systems using, for

example, a high performance crypto processor, such the one described in chapter 6. A

proposal for this kind of systems can be: once the key-refresh command is given, the

old session key is stored in a reserved crypto-processor memory space and it is used

only for the SAs that had been swapped out before renewing the session key. For the

successive swap operations on the same SAs, the new session key must be used. The

technique described above works only if the key-refresh command is given only once in

the maximum lifetime for the SAs (8 hours). In that way, the old key needs to be kept

for at least 8 hours, then it is no more useful, since the SAs opened before that time

must be closed anyway. Using more than two session keys could overcome the problem

of being able to perform only one session key refresh during the SAs maximum

lifetime. Probably this is not necessary, since today it is almost impossible to break a

256-bit AES cryptographic code in a so short time.

3.3.3. Diffie-Hellman secret

As stated in section 1.2.3, a Diffie-Hellman secret needs to be stored in memory during

each key exchange process. In accordance with the team developing the ECC hardware

(see [CA-PO]), also using a 600-bit ECC key, 256 bits of memory space is needed to

store the Diffie-Hellman secret (considering a maximum symmetric key dimension of

Chapter 3 The security policy 31

256 bits). This allows us to store the Diffie-Hellman secret related to each SA to be

created, in the corresponding key field of the smart card SA cache.

It must be verified if that solution can cause any interoperability problem with the other

existing IPSec implementations. If any of those problems arise, the following proposals

can be evaluated as alternative solutions:

• use bigger smart card SA cache entries to allow the complete storage of the

Diffie-Hellman secret (up to 600 bits). This solution can be suitable for small

systems (like a smart card) in which very few cache entries should be present

(e.g. 16).

• use a dedicate memory area in the smart card for the storage of the Diffie-

Hellman secrets. The dimension of that memory area should be studied to avoid

the system to stall because no positions in that area are available for the creation

of a new SA. That memory space can also be managed as a cache, implementing

a replacing algorithm. In the latter case, the data contained in the cache need to

be encrypted before storage to avoid the host machine to be able to compute the

symmetric key.

3.4. An IKE-IPSec security policy example: the case of a mobile user

(“Road Warrior”)

3.4.1. IKE phase 1

The mode to be preferred in this phase depends on the application. The one that seems

to be more suitable for the road warrior application is the phase 1 authenticated with a

revised mode of public key encryption ([RFC-2409], section 5.3). The algorithms

proposed are ECC as public key algorithm, SHA-1 as hash algorithm and AES as

symmetric encryption algorithm. If these algorithms are not available, the classical RSA

and triple-DES will be used.

128-bit wide keys (with the default number of rounds for that key dimension) will be

proposed for the usage with the AES algorithm. As a matter of fact 128-bit wide keys

seem to provide a sufficiently high level of protection, using less system resources than

Chapter 3 The security policy 32

the ones used with wider keys. This solution also allow interoperability with all the

systems which do not allow negotiation of the AES key-size.

For DES the key dimension cannot be negotiated.

For the elliptic curve cryptography, the ECC Group 8 is proposed. That group is based

on a Galois Field GF[2283] (see [DRAFT-1]). Unfortunately, that group is not

mandatory-to-implement for IPSec compliant systems. Therefore, if the other peer does

not have the ECC Group 8 available, the ECC Group 4 will be proposed instead.

The proposals for the phase 1 are summarized in Table 3.1.

MODE
Public key
algorithm

hash
algorithm

Symmetric
key

algorithm

phase 1 authenticated with a
revised mode of public key
encryption

ECC

(Group 8 or 4)
SHA-1

AES

(128-bit key)

phase 1 authenticated with a
revised mode of public key
encryption

ECC

(Group 8 or 4)
MD5

AES

(128-bit key)

phase 1 authenticated with a
revised mode of public key
encryption

RSA

(Group 4)
SHA-1 3DES

phase 1 authenticated with a
revised mode of public key
encryption

RSA

(Group 4)
MD5 3DES

Table 3.1: IKE Phase 1 proposals for the “Road Warrior” network ordered by preference

3.4.2. IKE phase 2

As explained before, the mode to be preferred is the main one that guarantees PFS.

128-bit wide keys (with the default number of rounds for that key dimension) will be

proposed for the usage with the AES algorithm. This is done because 128-bit wide keys

seem to provide a high level of protection, using less system resources than the ones

used with wider keys. This solution also allow interoperability with all the systems

which do not allow negotiation of the AES key-size.

For DES the key dimension cannot be negotiated.

Chapter 3 The security policy 33

When our system acts as initiator in phase 2, it will do the proposals reported in Table

3.2.

Mode Private key
algorithm

Authentication
algorithm

Main AES (128-bit key) HMAC-SHA1

Main AES (128-bit key) HMAC-MD5

Main AES (128-bit key) none

Quick AES (128-bit key) HMAC-SHA1

Quick AES (128-bit key) HMAC-MD5

Quick AES (128-bit key) none

Main 3-DES HMAC-SHA1

Main 3-DES HMAC-MD5

Main 3-DES none

Quick 3-DES HMAC-SHA1

Quick 3-DES HMAC-MD5

Quick 3-DES none

Table 3.2: IKE Phase 2 proposals for the “Road Warrior” network ordered by preference

3.4.3. SA Protocol selection

For the road warrior application the protocol that seems to be more suitable is ESP in

tunnel mode; in that way both data and headers are protected and authenticated without

using any SA bundle.

Chapter 4 The smart card – IPSec software interface 34

4. The smart card – IPSec software interface

The IPSec implementation will be based on a smart card that will provide the AES and

the ECC cryptography algorithms. IPSec is the only part of the system that can directly

communicate with the smart card, therefore a driver needs to be written. That driver will

have to manage various functions such as the SA data swapping, as described in the

security policy (see chapter 3). IPSec will also have to provide any way for the key

exchange application (IKE5) to communicate with the smart card.

The smart-card/IPSec interface was written referring to the IPSec suite of protocols

documents, the security policy and the system’s structure. The interface specification

contains all the commands that the smart card should provide to the system and the

functionality that the system should support to allow the smart card to work.

Only a description of the software interface is given here. As stated before, the

development of the hardware interface between the smart card and the host is beyond

the scope of this document.

4.1. Commands

Here follows the explanation of each command that needs to be present in the software

interface, basing on the requirement of the system. A command summary is provided in

Table 4.1 and in Table 4.2.

4.1.1. IPSec to smart card commands

In this section all the commands that can be invoked by IPSec are described. A

complete list of those commands is provided in Table 4.1.

5 Here IKE is intended as a separate part with respect to IPSec, this comes from the fact that IKE operates

at the application level, while the other two IPSec protocols (AH an ESP) operates at network level, as

explained in chapter 1.

Chapter 4 The smart card – IPSec software interface 35

4.1.1.1. login

It allows using the smart card after a PIN code check. This command makes the smart

card generate the AES session key (see section 3.3.2).

If the given PIN code is not correct, the smart card will wait for 5s before accepting a

new attempt. After 3 consecutive login errors, the smart card stops working and needs

an hardware reset (pull-out).

4.1.1.2. refreshSessionKey

This command is used to refresh the session key used for storing the SA data on the

host. The SA information stored outside the smart card before that operation will not be

accessible anymore.

4.1.1.3. resetSC

It deletes the smart card SA database and brings the smart card state back to the login

state. The AES session key is deleted too.

After having issued this command, all the previously opened SAs cannot be anymore

used.

4.1.1.4. readSCStatus

This command allows IPSec to read the smart card internal status registers for testing

purposes. This command will need to be further developed when the smart card layout

will be completed. Anyway this command will be carefully thought to avoid revealing

the keys in any case.

4.1.1.5. setSAStatus

This command is used to upload the SA information in a smart card memory location

specified by the position parameter. The information sent are composed by:

• the IV and the AES algorithm settings in clear form;

• the AES key and the CRC result encrypted with the AES session key (see

section 3.3).

Chapter 4 The smart card – IPSec software interface 36

The encrypted data are decrypted in the smart card and the CRC is then checked. If any

part of the given data is wrong (i.e. the computed CRC does not correspond to the

stored one), the smart card will give back an error code (see subsection 4.1.4).

4.1.1.6. getSAParameters

This command makes the smart card return the SA information corresponding to the

given key memory position (specified by the position parameter). The data format is the

same as described in subsection 4.1.1.5. This command is mainly needed when it is

necessary to store the key on the host for freeing a smart card memory position.

4.1.1.7. genDH

This command makes the smart card generate a random number and store it in the given

key memory position (specified by the position parameter). The smart card returns the

result of the operation given by k*p where k is the randomly generated number and p is

the curve point. Before giving this command, is necessary to use the setECCinfo

command or to verify that the set ECC parameters are the correct ones using the

getECCinfo command (a long ECC curve’s computation time can be avoided). This

command can be used to generate the Diffie-Hellman payload to send to the other peer

during the key exchange phase of a SA creation.

From the point of view of the parameters:

• The key size is coded as follows: 0 corresponds to a 128-bit AES key; 1

corresponds to a 192-bit key; 2 corresponds to a 256-bit key.

• The AES modes are coded as in the IPSec RFCs.

• The number of rounds must be less or equal than 14.

This command accomplish with the hypothesis reported in section 3.3.3.

4.1.1.8. completeDH

This command makes the smart card generate the AES key applying the Diffie-Hellman

procedure on the KE-DH parameter (key=k*h*p) and the parameter previously stored in

the given key memory position (specified by the position parameter); after that

computation the specified key memory position is overwritten by the newly generated

key. Before giving this command, is necessary to use the setECCinfo command or to

Chapter 4 The smart card – IPSec software interface 37

verify that the set ECC parameters are the correct ones using the getECCinfo command

(a long ECC curve’s computation time can be avoided). This command is used to

generate the AES key during the key exchange phase of a SA creation.

The key size is coded as follows: 0 corresponds to a 128-bit AES key; 1 corresponds to

a 192-bit key; 2 corresponds to a 256-bit key.

This command accomplish with the hypothesis reported in section 3.3.3.

4.1.1.9. deleteSA

This command deletes the information that are in the given smart card memory position

(specified by the postion parameter).

4.1.1.10. symmdecrypt

This command makes the smart card decrypt the given data using the AES algorithm

with the parameters contained in the given memory position (specified by the position

parameter). Before using this command the AES parameters have to be stored into the

corresponding memory position using the setSAStatus command (for SA information

stored on the host) or the completeDH command (for a newly created SA). A parameter

allows to specify whether a hash checking has to be performed or not on the data.

4.1.1.11. symmEncrypt

This command makes the smart card encrypt the given data using the AES algorithm

with the parameters contained in the given memory position (specified by the position

parameter). Before using this command the AES parameters have to be stored into the

corresponding memory position using the setSAStatus command (for host stored SA

information) or the completeDH command (for a newly created SA). A parameter

allows to specify whether the data have to be hashed or not with the algorithm specified

when the SA was created.

4.1.1.12. setECCInfo

This command sets the ECC parameters to be used for the next ECC-block operation(s).

The parameters are: the polynomial length (n) and 4 n-bit numbers (A and B that are the

curve parameters; x and y that are the coordinates of the curve’s base point). If the given

Chapter 4 The smart card – IPSec software interface 38

parameters are the same of the previous invocation of the setECCInfo command, the

smart card will not perform the ECC curve computation that would be otherwise

needed.

4.1.1.13. getECCInfo

This command makes the smart card returning the ECC parameters currently used by

the ECC block.

4.1.1.14. getPubKey

Request the smart card certificate (containing the smart card public key) to be sent to

another peer.

4.1.1.15. publicEncrypt

Encrypt a data packet using the public key set using the setECCInfo command. This is

useful for encrypting data to be sent to another peer (whose public key is the one that

has been set) using the ECC algorithm.

4.1.1.16. publicDecrypt

Decrypt a data packet using the smart card’s private key. This is useful for decrypting

data encrypted with the smart card public key using the ECC algorithm.

4.1.1.17. hash

Makes the smart card compute (and give) the specified pseudo-random function (that

can be MD5 or SHA-1) for the given data. This command can be useful during IKE

phase 1.

4.1.1.18. genSymmSign

Makes the smart card compute (and give) the specified pseudo-random function (that

can be HMAC-MD5 or HMAC-SHA-1) for the given data. This is useful for

symmetric-key-based authentications.

4.1.1.19. genECDSASignature

This service signs using ECDSA (Elliptic Curve Digital Signature Algorithm) the SHA-

1 HASH output that needs to have been previously computed. This service is used

during IKE Phase 1 authenticated with signatures.

Chapter 4 The smart card – IPSec software interface 39

4.1.1.20. verifyECDSASignature

This service verifies the signature according to the ECDSA algorithm. The decryption

of the message m and the SHA-1 hash computation need to be performed in advance.

This service is used during IKE Phase 1 authenticated with signatures.

4.1.2. Smart card to IPSec commands

In this section all the commands that IPSec provides for the smart card are described. A

complete list of those commands is provided in Table 4.2.

4.1.2.1. error

This command is used to return an error message to IPSec. The error codes are

described in section 4.1.4.

4.1.2.2. loginResults

Used to communicate the results of a user login to the smart card driver.

4.1.2.3. testResults

Used to communicate the results of the internal self-tests or the status of internal

circuitry to the smart card driver.

4.1.2.4. SCStatus

Used to give the content of the internal Status Register after a readSCStatus request.

4.1.2.5. SAParameters

This command is used to give to IPSec the SA information previously requested

through the getSAInfo command. The data format is the same as described in

subsection 4.1.1.5.

4.1.2.6. randomDH

This command is used to get to IPSec the symmetric key generation payload previously

requested via the getSAKey command. The given key is the one corresponding to the

specified smart card position number and it is in clear form.

Chapter 4 The smart card – IPSec software interface 40

4.1.2.7. symmdecryptedP

This command gets the AES decrypted packet corresponding to a previous decryption

request made using the symmdecrypt command. The decrypted packet is given with the

smart card position number in which the corresponding SA information are stored.

4.1.2.8. symmEncryptedP

This command gets the AES encrypted packet corresponding to a previous encryption

request made using the symmdecrypt command. The decrypted packet is given with the

smart card position number in which the corresponding SA information are stored.

4.1.2.9. ECCInfo

This command gives the current ECC parameters previously requested with the

getECCInfo command.

4.1.2.10. ECCKey

This command gives the smart card public key previously requested with the getPubKey

command.

4.1.2.11. ECCEncrypted

This command gives the ECC encrypted packet corresponding to a previous encryption

request made using the publicEncrypt command. The encryption is made using the other

peer’s public key previously set with the setECCInfo command.

4.1.2.12. ECCDecrypted

This command gets the ECC decrypted packet corresponding to a previous encryption

request made using the publicDecrypt command. The decryption is made using the

private key stored in the smart card.

4.1.2.13. hashResults

Gives the result of the pseudo-random function applied to the data passed with the PRD

command.

4.1.2.14. symmSign

Gives the result of the HMAC-MD5 or HMAC-SHA-1 function applied to the data

passed with the getSymmSign command.

Chapter 4 The smart card – IPSec software interface 41

4.1.2.15. ECDSASignature

Gives the ECDSA signature obtained from the data previously sent through a

genECDSASignature command.

4.1.2.16. ECDSACheckRes

Gives the result of the verifyECDSASignature command.

4.1.2.17. confirmation

Confirm a previously requested action. The returned code is the command code of the

requested action. The commands which need confirmation are the following ones:

• refreshSessionKey

• resetSC

• setSAStatus

• completeDH

• deleteSA

• setECCInfo

4.1.3. Command table

In Table 4.1 and in Table 4.2 are defined the codes and the data exchanged using the

appropriate interface between the two peers. The commands that can be issued by IPSec

(described in subsection 4.1.1) are shown in Table 4.1, while in Table 4.2 are shown the

command that can be issued by the smart card (described in subsection 4.1.2).

Chapter 4 The smart card – IPSec software interface 42

Task
N.

Task Name Data Exchange Operation Notes

1 login PIN s.c. login. After the validation a new
AES session key is generated

without doing this operation,
the s.c. will refuse every
request

2 refreshSessionKey makes the s.c. generate a new AES
session key

old SAs information stored in
IPSec will not be usable
anymore

3 resetSC resets the s.c.: all the information
contained in the s.c. are deleted and a
new AES session key is generated

5 readSCStatus Register number makes the s.c. give the specified
register status

6 setSAStatus position, SA_info sets the AES parameters for the
indicated SA

7 getSAParameters position requests the "position" SA stored into
the s.c.

the given key is encrypted
with AES using a key
generated at the s.c. startup

8 genDH position, dim. of the
symmetric key,
number of rounds,
mode

makes the s.c. generate the random
number (k), store it into the SA space
and compute k*p where p is an ECC
curve's point

9 completeDH position, dim. of the
symmetric key, KE-DH

completes the DH computation doing
p*k*h

with this command the SA
creation process is completed

10 deleteSA position deletes the SA information from the s.c.
memory

11 symmdecrypt position, data length,
packet of ecnrypted
data, hash flag,IV flag

decrypts data. The length of the data
packet is given by the data length
parameter and every packet sent as
data after this command has and ID
number

first the SA parameters have
to be set

12 symmEncrypt position, data length,
packet of data,hash
flag, IV flag

encrypts data. The length of the data
packet is given by the data length
parameter and every packet sent as
data after this command has and ID
number

first the SA parameters have
to be set

13 setECCInfo n, A, B, x, y [,
public_key]

sets the parameters needed by the
ECC

n=polynomial length;
A,B=curve parameters; x,
y=curve’s base point.

14 getECCInfo requests the parameters that ECC is
using when this command is given

15 getPubKey requests the s.c. public key
16 publicEncrypt packet of data encrypts with public key algorithm

using a specified key and ECC
polynomial

a setECCinfo command must
be given first

17 publicDecrypt packet of ecnrypted
data

decrypts with public key algorithm
using the private key stored into the
s.c.

a setECCinfo command must
be given first

18 hash data1, data2, prf_fcn generates the specified pseudo-
random function of the given data

prf_fcn can be MD5 or SH-1

19 genSymmSign sa#, data1, data2,
hash_fcn

generates a signature using a
symmetric key

hash_fcn can be HMAC-MD5
or HMAC-SH-1

20 genECDSASignature data generates an ECDSA signature
21 verifyECDSASignature data checks the ECDSA signature of the

given data

Table 4.1: table of the command provided by the smart cards for IPSec

Chapter 4 The smart card – IPSec software interface 43

Task
N.

Task Name Data Exchange Operation Notes

22 error error code communicates an error to IPSec
23 loginResults results replies to a login request subsequent to a login

command
24 testResults results gives the result of the s.c. test subsequent to a testSC

command
25 SCStatus register content gives the actual content of the specified

s.c. register
subsequent to a
readSCStatus command

26 SAParameters position, info gives the information about a SA
previously requested by IPSec

subsequent to a
getSAParameters command

27 randomDH position, k gives the randomly generated number
for the D-H key exchange

subsequent to a genDH
command

28 symmdecryptedP position, decr_packet gives the decrypted packet relative to a
SA

subsequent to a
symmdecrypt command

29 symmEncryptedP position, encr_packet gives the encrypted packet relative to a
SA

subsequent to symmEncrypt
command

30 ECCInfo n, A, B, x, y [,
public_key]

gives the information about the currently
used ECC parameters

subsequent to getECCInfo
command. For the return
parameters refer to the ones
of getECCInfo

31 ECCKey Key gives the s.c. public key previously
requested

subsequent to getPubKey
command

32 ECCEncrypted encr_packet gives an ECC encrypted data packet subsequent to publicEncrypt
command

33 ECCDecrypted decr_packet gives an ECC decrypted data packet subsequent to publicDecrypt
command

34 hashResults data gives the hash function subsequent to PRD
command

35 symmSign signature gives the symmetric signature subsequent to
genSymmSign command

36 ECDSASignature signature gives the ECDSA signature subsequent to
genECDSASign command

37 ECDSACheckRes results subsequent to
verifyECDSASignature
command

38 confirmation ofWhich confirms a previous command. subsequent to
refreshSessionKey,
resetSC, setSAStatus,
completeDH, deleteSA or
setECCInfo commands.
ofWhich is the code of one
of these commands

Table 4.2: table of the command provided by IPSec for the smart card

4.1.4. Error codes

In Table 4.3 a list of all the possible error code that the smart card can return and an

explanation of these error codes are given.

Chapter 4 The smart card – IPSec software interface 44

number error type optional
parameters

Description

1 generic error
2 Bad SA index SA position given when a command requests an operation on a SA location that has not

been initialized
4 wrong AES packet SA position given when a wrong encrypted packet is passed as setSAStatus command

parameter
5 tampered SA

information
SA position given when a tampered SA information is passed as setSAStatus command

parameter: this is an auditable event
6 wrong DH number given when using a completeDH a wrong KE-DH parameter is passed
7 AES parameters not

set
SA position given when some parameters for the AES algorithm are missing for a

requested SA
8 wrong ECC info given when one or more of the setECCInfo parameters are mistaken
9 ECC info not set given when a publicEncrypt or publicDecrypt command is given without

having set the ECC parameters first
10 wrong PRD

parameter
 given when a mistaken parameter is passed using the PRD command

11 wrong symmSign
parameter

 given when a mistaken parameter is passed using the getSymmSign
command

12 wrong signature
control parameter

 given when a mistaken parameter is passed using the signatureControl
command

13 login already done given when someone tries to login the s.c. while it has already been done
14 can't refresh the

Session Key
 given when for some causes (e.g. key in use by the AES module) the AES

session key cannot be modified

Table 4.3: error codes

4.2. Software communication protocol

Looking at the command table, three different command formats can be identified. Each

of these formats has a different length from the other ones, depending on the parameters

which are needed. We name those three command formats A, B, and C. The format A is

composed of only one word; the format B supports one word for the command identifier

and n words of data. The format C is composed of a word for the command identifier,

one word for additional parameters, and n words of data.

4.2.1. Command Format A (1 word)

The command format A is composed of 4 bytes only, in which the command identifier

and the needed command parameters are included. See Table 4.10 and Table 4.11 for a

detailed list of format A commands.

Command Identifier (1 word)

Bit number Function
31-24 Command ID
23-0 Parameters

Table 4.4: A command format

Chapter 4 The smart card – IPSec software interface 45

4.2.2. Command Format B (1+n word)

The command format B has a variable size, depending on the size of data to be

transmitted. The first 4 bytes of the command are used to specify some parameters and

how many packets of data follow the header. See Table 4.10 and Table 4.11 for a

detailed list of format B commands.

Command Identifier (1 word)

Bit number Function
31-24 Command ID
23-0 Parameters

Table 4.5: B command format – header

Data (n words)

Bit number Function
n*8-0 Data

Table 4.6: B command format – data

4.2.3. Command Format C (1+1+n words)

The command format C is very similar to the format B, since its size depends on the

data to be transmitted. The only difference is that the C command format allows two

different sets of data to be sent using the same command; the first data packet is of fixed

length, wile the second one is of variable length. The first 4 bytes of the command are

used to specify some parameters and how many packets of data follows the header. See

Table 4.10 and Table 4.11 for a detailed list of format C commands.

Command Identifier (1 word)

Bit number Function
31-24 Command ID
23-0 Parameters

Table 4.7: C command format – header

Parameters(1 word)

Bit number Function
31-0 Data

Table 4.8: C command format – data, 1st part

Chapter 4 The smart card – IPSec software interface 46

Data (n words)

Bit number Function
n*8-0 Data

Table 4.9: C command format – data, 2nd part

4.2.4. Command format tables

The format of the commands described in section 4.1.1 is shown in Table 4.10, while

the format of the commands described in section 4.1.2 is shown in Table 4.11.

In both tables the symbol “�x� “is used. That symbol stands for “the smallest integer

greater then or equal to x” (ceil).
Task Name Command

Format
Parameters
number

Command words Data Exchanged

Login A 1 1 command code (bits 31-24), PIN value (bits 23-0)
refreshSessionKey A - 1 command code (bits 31-24)
ResetSC A - 1 command code (bits 31-24)
TestSC t.b.d. t.b.d. t.b.d. to be defined
readSCStatus A 1 command code (bits 31-24), register number
setSAStatus B 1+1 1+n command code (bits 31-24), SA index (bits 7-0), crypted_info
getSAParameters A 1 1 command code (bits 31-24), SA index (bits 7-0, bit 7 is MSB)
GenDH A 1 1 command code (bits 31-24), mode (bits 23-20), number of

rounds (bits 19-16), key size (bits 15-8), SA index (bits 7-0)
[see section 4.1.1.7 for details about the parameters]

completeDH B 1+1 1+n packet 1: command code (bits 31-24), key size (bits 15-8), SA
index (bits 7-0);
packet 2: KE-DH

DeleteSA A 1 1 SA index (bits 7-0)
symmDecrypt C 1+4+1 1+1+n packet 1: command code (bits 31-24), SA index (bits 7-0);

packet 2: hash flag (bit 24), sign. append (bit 23), IV flag (bit16),
data length (bit 15-0);
next packets: encrypted data

symmEncrypt C 1+4+1 1+1+n packet 1: command code (bits 31-24), SA index (bits 7-0);
packet 2: hash flag (bit 24), sign. append (bit 23), IV flag (bit16),
data length (bit 15-0)
next packets: clear data

SetECCInfo B 1+4 [5] 1+ �n/32� *2+�2n/32�*2
[+�n/32�]

packet 1: command code (bits 31-24), curve length (n) (bits 23-
8), data packet length (bits 7-0)
next packets: A, B, x, y [, public_key]

GetECCInfo A - 1 command code (bits 31-24),
GetPubKey A - 1 command code (bits 31-24),
PublicEncrypt B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0)

next packets: clear data
PublicDecrypt B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0)

next packets: encrypted data
Hash B 3+2 1+n packet 1: command code (bits 31-24), length (bit 23-16), length

(bit 15-8), hash func. (bits 3-0)
next packets: data1, data2

HashInsertSimmKey A 1 1 command code (bits 31-24), SA index (bits 7-0)
GenSymmSign B 3+2 1+n packet 1: command code (bits 31-24), length (bit 23-16),

Signature func. (bits 11-8), SA index (bits 7-0)
next packets: data1, data2

genECDSASignature B 1+1 1+n packet 1: command code (bits 31-24), length(7-0)
next packets: data

verifyECDSASignature B 1+1 1+n packet 1: command code (bits 31-24), length(7-0)
next packets: data

Table 4.10: format table of the “IPSec to smart card” commands

Chapter 4 The smart card – IPSec software interface 47

Task Name Command
Format

Parameter
s number

Command words Data Exchanged

Error A 1 1 command code (bits 31-24), SA index (bits 15-8), error code (bits
7-0)

LoginResults A 3 1 command code (bits 31-24), login counter (bits 10-8); status
code (bits 7-4); results (bit 0);

TestResults t.b.d. t.b.d. t.b.d. to be defined
SCStatus A 1 1 command code (bits 31-24), status code (bits 17-0);
SAParameters B 1+1 1+n command code (bits 31-24), SA index (bits 7-0), info
RandomDH B 1+1 1+n command code (bits 31-24), SA index (bits 7-0), k
SymmDecryptedP B 1+1 [2] 1+n [+m] Packet 1: command code (bits 31-24), SA index (bits 7-0);

next packets: decr_data[,sign.]
SymmEncryptedP B 1+1 [2] 1+n [+m] Packet 1: command code (bits 31-24), SA index (bits 7-0);

next packets: encr_data [,sign.]
ECCInfo B 1+4 [5] 1+ �n/32�

*2+�2n/32�*2
[+�m/32�]

packet 1: command code (bits 31-24), curve length (n) (23-8
bits), data packet length (bits 7-0)
next packets: A, B, x, y, public_key]

ECCKey B 1 1+n packet 1: command code (bits 31-24), key length (23-8 bits),
packet length (bits 7-0)
next packets: Key

ECCEncrypted B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0)
next packets: encr_packet

ECCDecrypted B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0)
next packets: decr_packet

HashResults B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0)
next packets: data

SymmSign B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0)
next packets: signature

ECDSASignature B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0)
next packets: signature

ECDSACheckRes B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0)
next packets: results

Confirmation A 1 1 command code (bits 31-24), executed command code (bits 7-0);

Table 4.11: format table of the “smart card to IPSec” commands

4.3. The communication function

The command format has an intuitive structure for command passing between IPSec

and the smart card. Two functions, one for each side of the communication channel

between IPSec and the smart card, will be provided. Those functions will have two

arguments each. The former argument is the length of the latter one. The second

argument is an array of 32-bit integers carrying the codified command with its

parameters. The length given in the first argument is represented as the minimum

number of 32-bit integers which are needed for containing the data to be sent.

Chapter 5 Writing the software interface C++ code 48

5. Writ ing the software interface C++ code

In this chapter we discuss the project specification and a implementation of the software

interface previously described.

The implementation here proposed has to be taken as a reference implementation, that

should be modified and optimized before being used in a real life system. It should be

modified to take into account the necessary synchronization issues that can raise

between the various elements of the system. This cannot be done here, being the

synchronization techniques specific for every considered system.

The programming language chosen for this implementation is C++.

The main objective of what proposed here is to provide a more clear view of the

software interface and how it should be used.

Chapter 5 Writing the software interface C++ code 49

5.1. UML class diagram

Figure 5.1 shows the UML class diagram specifying our software system; the figure

also shows the SmartCard and the iKE classes, which are not developed by us.

SmartCard is the class containing the software model of the smart card (or the interface

to the hardware smart card), while iKE is the class representing the implementation of

the IKE protocol. Figure 5.2 shows the detailed description of the sC_driver class.

Figure 5.1: UML class diagram of the system

Chapter 5 Writing the software interface C++ code 50

Figure 5.2: UML class diagram of the sC_driver class

Figure 5.3 shows the UML sequence diagram describing the typical behavior of the

system. In that diagram all the operations related to a request of symmetric encryption

are shown. A similar diagram can be drawn for all the other possible operations.

Figure 5.3: UML sequence diagram of the system

Chapter 5 Writing the software interface C++ code 51

5.2. Testing methods

Using an Object Oriented programming language, we choose to test our code by using

the built in self test methodology ([FUG]): in each method of the written classes the

required preconditions and the post-conditions will be checked through C++ assertions.

This is used to ensure data consistency in the class, but a functional test of the system,

as a class interoperability test is still needed.

5.3. The smart card software driver

The smart card driver represents a special part of the system.; it allows the IPSec

implementation to communicate with the smart card and to hide certain smart card

characteristics (e.g. the maximum number of available memory slots) to the IPSec

implementation itself. The implementation issues related to this part of the system are

described in the following paragraphs.

5.3.1. SA swap policy

In some cases, it will be necessary to swap out a SA from the smart card. We use the

Least Recently Used (LRU) policy to select the SA to be stored outside the smart card.

To implement that policy, it is necessary to keep track of the time when a SA was last

used. This can be done using the counter technique ([TAN], pp.79-120): a variable for

each SA stored in the smart card is updated every time one of the SAs is used. The

update consists of decrementing the set of variables (one for each SA). Those variables

are initialized at the maximum available value for the kind of chosen number

representation (for example the maximum value available with a 32 bit-wide unsigned

integer). Each time it is necessary to store a SA outside the smart card, the one with the

lowest value of that variable is selected.

5.3.2. Synchronization issues

During the simulation of the system, it is necessary that only one smart card model is

instantiated (we have to avoid that for every IPSec session created a smart card object is

instantiated). This can be done by instantiating the driver during the IPSec initialization

Chapter 5 Writing the software interface C++ code 52

phase. Anyway, a check for the condition that only one smart card model has been

instantiated, can be provided by a static counter, incremented and checked as a class

constructor precondition at each driver instantiation.

The other thing we have to consider is that, if there are more than one IPSec sessions

opened, only one of these can access the driver at a given time. For keeping under

control this condition, we choose to use a counter. That counter will be checked at each

driver’s call done by an IPSec session. We have to note that the mechanism described

before could be not sufficient in a real system and a more suitable technique should be

implemented using the primitives offered by the considered operating system. Checking

the counter as described before should be enough if the smart card driver is used

coupled with a Linux IPSec implementation and compiled in the kernel (see [POM] in

the “character device files” section). Those two conditions seem to be not too hard to

respect being that all the known IPSec implementation for Linux run as kernel

modules.

The smart card will manage the received commands using a FIFO queue, therefore we

have to take into account that in some cases that queue can become full. For doing this

we will use a counter of the free FIFO queue positions and we will return an error code

to the IPSec calling function when that counter reach the 0 value. We can use a simple

counter increment and decrement because, as stated before, only one driver instance can

run at a given time.

Assuming that there will be only one smart card for every instance of the driver, the

ip_rcv method implements no synchronization mechanism.

5.3.3. Data structures

Two different types of information have to be stored in the smart card driver:

• a map of the smart card memory, to know where a security association is

allocated; we name this structure “scSlot”;

• a list of the security associations that are using the smart card; we name this

structure “saInfo” .

Chapter 5 Writing the software interface C++ code 53

The first structure is pretty small, since the smart card has a small amount of memory.

The second one can be as big as we want, to store all the possible SAs that can be

managed by the host.

For each element of the smart card memory we need to store two pieces of information:

the number of the SA that is allocated in that slot and the usage counter as described in

the paragraph above (Figure 5.4).

saInfo* posArray;
unsigned int usage;

scSlot

Figure 5.4: the scSlot structure

For each element of the SA list, we need to store three pieces of information: the SA

number, the smart card memory cell where the SA is possibly allocated, and, optionally,

the data swapped from the smart card for that SA (Figure 5.5). When a SA is not

allocated to any smart card memory position, (i.e. that SA has been swapped out) we

store in the corresponding field a position number obtained by the number of the last

smart card memory slot plus one.

unsigned int sa;
unsigned int slot;
unsigned int* saved;

saInfo

Figure 5.5: the saInfo structure

While it is clear that the structure described above can be organized in an array where

each element is mapped on a smart card memory position, the same is not clear in the

case of the SA list. Logically it would be better to organize the information in a

dynamic structure like a list, but for speed purposes (we will need to search in that

structure very often) using an array would a better choice. However an array does not

provide the capability to grow as the requests of new SAs does. Therefore we choose to

use an array of SA structures containing 40 times the number of available smart card

memory slots. In that way we will be able to provide at most the equivalent of 40

opened SAs for each smart card memory slot. This could seem a limitation on the

Chapter 5 Writing the software interface C++ code 54

system’s capability, but we have to consider the fact that allowing too many opened

SAs on the same smart card can force the system to loose more time swapping data

between the smart card memory and the host than encrypting and decrypting data.

TO summarize, the two data structures considered are:

• sc: an array of scSlot structures (Figure 5.6); the length of this array corresponds

to the number of memory slots available in the smart card (e.g. 16).

• saArray: an array of saInfo structures (Figure 5.7); the length of this array is 40

times the length of the sc array, (e.g. 16*40=640).

saInfo* posArray;
unsigned int usage; scSlot

scSlot
scSlot

scSlot

scSlot

scSlot

scSlot

.

.

.

sc

Figure 5.6: the sc data structure

unsigned int sa;
unsigned int slot;
unsigned int* saved;

saInfo

saInfo

saInfo

saInfo

saInfo

saInfo

saInfo

.

.

.

saArray

Figure 5.7: the saArray data structure

5.3.4. How the driver works

The smart card driver must perform two tasks :

• send and receive commands and data to the smart card

• swap SA data from the smart card.

In the first implementation of the driver, we will perform data swapping only when

needed (e.g. when all the smart card memory slots are filled and there is the request of

using a SA that is not in one of these slots), but a more efficient storage and swap policy

can be implemented.

The driver receives the commands from the iPSec and from the iKE classes (through the

iPSec one) and sends them to the smart card.

Here are the different kind of situations that the driver has to manage:

• When the driver receives the request to create a new SA it must first verify that

there is enough space, both in the saArray array and in the smart card memory.

Chapter 5 Writing the software interface C++ code 55

If there is no space in the saArray, the creation request must be refused. If the

smart card memory is full, a swap will have to be performed. The smart card

memory slot to swap must be chosen based on the swap policy previously

described. After a free position is found or created through a swap, the driver

can issue the command to create the new SA.

• When the driver receives a request to use the smart card with a specific SA (such

as for the requests of data encryption or decryption), it must verify if the

specified SA ha already been in a smart card memory slot; if not, it must retrieve

the needed information from the host memory and put them in a smart card

memory slot previously chosen. Once all these procedures are completed, the

driver can send the desired command to the smart card.

• In all the other cases the driver must marshal the given command with its

parameters and send the result to the smart card.

We have to remember that every time a SA is used the usage information have to be

updated for each smart card memory slot.

All the commands are sent to the smart card or arrives from the smart card in the format

described in the section 4.2, so that the data and the commands can be marshaled and

put into an array of unsigned integers.

When the driver receives data from the smart card, it only has to pass them to IPSec by

calling the suited function (chosen by looking at the command code).

The C++ code of this class can be found in Appendix A.

5.3.5. How IPSec should interact with the driver

When IPSec makes a request to the driver, it must take into account the fact that the

driver itself may not be able to pass the given command to the smart card. This can

happen when the command queue has became full. In that case an error code will be

returned by the driver and IPSec will have to wait until a slot in the command queue

will become free. For the first implementation of the driver, this should be done by

retrying after a delay. Implementing a more suitable synchronization mechanism using

the operating system primitives would be a good improvement for future releases.

Chapter 5 Writing the software interface C++ code 56

We have to note that all these synchronization cannot be done in the driver because

making the driver wait for some tasks would deny all the other processes to access the

smart card.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 57

6. The crypto-processor used on a router: study of

the optimal SA cache dimension

In the first part of this document, we mostly referred to a crypto-system based on a

smart card. In this section we will no more refer to a smart card, but to a very similar

system built in a SoC6. Therefore here we will refer to a processor dedicated for

cryptography, not considering anymore the limitations commonly considered for smart

cards, such as the low power consumption. The core of our crypto-system can be

therefore based on a relatively high performance embedded processor such as an ARM

at 200MHz, while the main cryptographic functions can be implemented in hardware

considering a higher clock frequencies than the one used in smart-card-like systems.

6.1. Reference system

In this part of the document we are referring to a system like the one shown in Figure

6.1. Here the IPSec host is coupled with a router; in that way all the communications

between the machines belonging to the network in the dashed rectangle and the other

ones, are protected through IPSec tunneling by the IPSec router. The machines in the

left part of the scheme have to support IPSec for establishing secure connections with

the machines protected by the IPSec-router. The IPSec-host has chosen to be protected

by a firewall for diminishing the possibility of DoS attacks. Possibly the firewall should

be coupled with an intrusion detection system (see section 1.5). Those choices about the

network topology are anyway not influencing the results by the cache dimension study

described in this chapter.

The additional requirements we are considering for the system are:

• Up to 200Mbit/s of throughput

• Up to 512 entries in the security processor’s cache

6 System on a Chip.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 58

All the other requirements, such the ones regarding the security of the keys are kept as

stated in section 2.1.

Router/
Firewall

1

Client
m

Client
C

Client
B

Client
A

Server
A

Client
n

Server
B

Router
2

IPSec
host

Protected network

……

Router/
Firewall

1

Client
m

Client
C

Client
B

Client
A

Server
A

Client
n

Server
B

Router
2

IPSec
host

Protected network

……

Figure 6.1: IPSec router reference system

As stated before, for such a system we can no more use a smart-card like security-

processor, we prefer to consider a traditional integrated circuit, with the same structure

and interface of the smart card we described in the previous sections of this document.

When needed, we will refer to the data related to a standard 32-bit 66MHz PCI bus as

hardware interface between the host and the crypto-processor, although a different

interface could be chosen during the development of this project.

In this section we will refer to the various system’s components as illustrated in Figure

6.2. The acronyms used in that figure are explained below:

• SPD is the Security Policy Database, containing all the information about the

system’s security policy

• IP is the usual IP layer, belonging to the usual protocol stack

• SAD is the Security Association Database, containing all the information about

each opened SA (keys, settings, SA identifier, IV, …). It is really important to

note that all the “sensible” information here are stored in encrypted form (AES,

256 bit-wide key) so that these information are readable only in the crypto-

processor. See section 3.3 for further details.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 59

IPSec

SPD

SAD

In
terface

IP

Host

Low level
layers

Application
layers

IKECrypto-
processor

SAC

Interfa
ce

AES

HMAC

ECC

IPSec

SPD

SAD

In
terface

IP

Host

Low level
layers

Application
layers

IKE

IPSec

SPD

SAD

In
terface

IP

Host

Low level
layers

Application
layers

IKECrypto-
processor

SAC

Interfa
ce

AES

HMAC

ECC

Crypto-
processor

SAC

Interfa
ce

AES

HMAC

ECC

Figure 6.2: internal system representation

• IPSec is the block implementing all the IPSec communication functionality. For

all the cryptography-related stuff it uses the Crypto-processor, through the

Interface block.

• IKE is the block implementing the key exchange and the SA creation processes,

basing on the data in the SPD. It uses the IP services and it fills the SAD fields

once the SAs are created.

• The Interface:

o on the host side, is the software interface between the IPSec software

layer and the crypto-processor. It manages all the communications

between these two blocks and it manages the SAC. As a matter of fact

(see section 3.3 and chapter 4) the SAC is contained in the crypto-

processor, but it is manager by the host Interface block.

o On the crypto-processor side the interface manages the communications

never giving out the keys in clear form.

• Crypto-processor is the macro-block implementing all the needed

cryptographic algorithms (public and symmetric key encryption, authentication,

D-H exchanges). This block contains:

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 60

o the SAC, that is the cached portion of the SAD.

o the ECC block, that implements in hardware or on software (see [CA-

PO] for details) the ECC algorithm

o the AES block, that implements in hardware or in software (see [MAC-

MAR] for details) the AES symmetric encryption algorithm

o the HMAC block, that implements the hashing algorithms

As we stated in the previous sections, the problem of dimensioning the SAC, can be

seen as a cache dimensioning problem; for that cause, in the next parts of this document,

all the occurrences of the word “cache” have the same meaning of the word “SAC”.

6.2. Simulation data

For all the simulations we used the data provided by the ITA site ([ITA-1], [ITA-2]).

That data was obtained through tcpdum, a Unix tool for dumping the traffic of a

system. The data was then modified by a script called sanitize for preserving the privacy

of the people using that system. The typical data founded there contain in each line of

the file a timestamp, the source and the destination IP addresses (modified for privacy),

the source and the destination TCP ports, and the dimension of the datagram. The first

few lines of the data file we used are shown in Figure 6.3.

0.010445 2 1 2436 23 2
0.023775 1 2 23 2436 2
0.026558 2 1 2436 23 1
0.029002 3 4 3930 119 42
0.032439 4 3 119 3930 15
0.049618 1 2 23 2436 1
0.052431 5 2 14037 23 2
0.056457 2 5 23 14037 2
0.057815 6 7 23 1502 414
0.072126 8 9 1023 513 0

Figure 6.3: first few lines of the data file

The data we considered represent the traffic between the Lawrence Berkley Laboratory

and the rest of the world. That data are only about TCP traffic, but, considering this is

the prevalent part of that system’s traffic, these data could be good for our simulations.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 61

On the ITA site there are two tcpdump files taken from that system dumped in different

day times and of a different length (the first is two hours long and the other is one hour

long). Being the two dumps very similar from the point of view of throughput and

number of datagrams managed per second, we chose to primarily use the longest one

(around 1.8 million of rows, [ITA-1]). The throughput reached on that system is around

330kbit/s, so it is considerably lower than the maximum throughput desired for our

system. This will be completely not influent when we will care about the SAC cache

miss statistics, but it will be very important when we will care about the system timings.

In that case we will need to scale all the timestamps for reaching the desired throughput

of 200Mbit/s.

Unfortunately the data are about normal IP connections, so no information about the SA

creation and closure are reported.

Another file (for each dump) containing the TCP SYN/FIN packets is also available.

6.3. Number of opened SA

Running a first program on the data file, we can obtain some graphs about the number

of SAs needed at a given time for managing all the connections passing through the

system. Having no information about the SA closure, we can try four different ways for

keep the number of opened SAs under control during the simulations:

• no SA closure until they reach the maximum value for their sequence number

(232) or the 8 hours limit;

• SAs are closed when unused for more than 30 minutes; this condition is checked

every minute;

• when a TCP FIN packet sis received, the corresponding SA is closed;

• SAs are closed when unused for more than 30 minutes or when the system

receives a TCP FIN packet.

The last three condition are here proposed for simulation purposes only, however the 30

minutes timeout can be evaluated as a condition to be applied in real systems too.

The first way is the one that would probably be used on a real system where the lifetime

for each SA can be negotiated.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 62

The number of SAs opened over time is shown in Figure 6.4. In that figure are

considered the four cases previously illustrated: 30 min. timeout and not considering the

FIN packets, 30min. timeout also considering the FIN packets, considering the FIN

packets without any timeout, without any timeout and without considering the FIN

packets. The simulation program used for obtaining that results is reported in Appendix

B and it is explained in section 6.4.2.

Figure 6.4: number of opened SAs over time

As can be easily noted, the number of SAs continues to grow if no closing policy is

implemented or when only the TCP FIN packets are considered. The behavior of a real

IPSec system should be slightly different, due to the possibility of setting an expiration

time for each SA (anyway shorter than 8 hours). We stated that the behavior should be

“slightly different” because specifying the expiration time is not mandatory. Moreover,

when one of the two parties closes a SA, it can or cannot inform the other (see for

example [FSWAN]). In the latter case, there can be anyway a lot of SAs opened and

unused.

For understanding the behavior of the system in the four cases explained above, we can

also look at the graphs representing the distribution of the creation of new SAs over 1

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 63

second intervals. These distribution are shown in Figure 6.5 (no SA closing policy

adopted), Figure 6.6 (SAs are closed after being unused for more than 30min.), Figure

6.7 (SA closed when a TCP FIN packet is received), Figure 6.8 (SAs are closed after

being unused for more than 30min. or when a TCP FIN packet is received).

Not considering the initial phase, where a high number of new SAs is created (around

35 in the first second), we can note that the creation of new SAs is a process pretty well

distributed over the whole simulation time.

Using the TCP FIN packets for closing the SAs, causes more SAs to be newly opened in

each second (because of SAs that need to be re-opened) and does not really limits the

number of SA opened at a given time (see Figure 6.4). Those considerations are

confirmed looking at the graphs representing how many times a SA is used before being

closed. Those graphs are shown in Figure 6.9 (no timeout, not considering the TCP FIN

packets), Figure 6.10 (30 min. timeout, not considering the FIN packets), Figure 6.11

(no timeout, using the FIN packets), and Figure 6.12 (30 min. timeout, using the FIN

packets). In those graphs each SA is represented by a number on the abscissas axe.

Figure 6.5: SA creation distribution over 1s intervals

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 64

Figure 6.6: SA creation distribution over 1s intervals when a 30min. timeout is set on unused SAs

Figure 6.7: SA creation distribution over 1s intervals when the TCP FIN packets are used for closing the
SAs

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 65

Figure 6.8: SA creation distribution over 1s intervals when a 30min. timeout on the unused SAs is set and
the SA TCP FIN packets are used for closing the SAs

Figure 6.9: reuse of the SAs before being closed

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 66

Figure 6.10: reuse of the SAs before being closed when a 30min timeout on the unused SAs is set

Figure 6.11: reuse of the SAs before being closed using the TCP FIN packets for closing the SAs

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 67

Figure 6.12: reuse of the SAs before being closed when a 30min timeout on the unused SAs is set and
using the TCP FIN packets for closing the SAs

As can be noted looking at those graphs and at the results obtained from the simulations

(see section 6.4.4), the highest SA reuse is obtained when no SA closing policy is

adopted (average reuse of 483 times); slightly different results are obtained using the 30

minutes timeout (average reuse of 421). A consistent worsening of the SA reuse is

obtained using the TCP FIN packets for closing the SAs (average reuse of 140 when

using that policy alone and of 135 when combined with the 30 min. SA timeout). The

different number of SAs shown in each of the four graphs is due to the fact that when

using the TCP FIN packets or the 30 minutes timeout for the SAs closure, some SAs are

later reopened with the same source and destination IP address (please note that the SAs

are correctly considered different, since they are negotiated at different times, with

different keys and, possibly, with different parameters).

The SA negotiation is here considered to be done only when needed, while applying

“IKE Phase 2 quick mode” negotiations, two SAs are opened at the same time, one for

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 68

each direction of the communication. See section 6.4.8 for further details about this

topic.

As stated before, on a real system the policy to be adopted would probably be the one

considering a timeout on the unused SAs. That timeout should be chosen basing on a

profiling of the real system’s traffic and used in conjunction with the SAs lifetime data.

The better solution would be to check if the SA chosen to be closed due to the expired

timeout is or is not considered alive by the other peer. In our simulation we will anyway

consider all the four described cases, using an upper bound for the dimension of the

SAD of 4,000 records. In that way the SAD is large enough for not limiting the number

of opened SAs at any time during the simulations.

6.4. Cache dimension study without considering the crypto-processor

delays

In this section we illustrate the simulation we wrote and we ran to find the best

dimension to be adopted for the SAC. None of the delays introduced by the crypto-

system are here considered.

A LRU replacing policy ([P-H], pp. 380-402) is adopted for the SAC elements. For the

same cache, we choose to use a completely associative structure ([P-H] , pp. 380-402).

6.4.1. Space needed for the SAC

In the crypto processor only few information are really needed for processing the data

related to each SA. Studying the SAD fields that we need to also keep in the SAC, and

their dimension, we are able to compute how many space the SAC require on the

crypto-processor chip. The computation is done considering the worst possible case.

Considering an ISAKMP SA, the required fields are shown in Table 6.1.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 69

Field Length (worst case)
AES key 256 bits
AES encryption algorithm, IV mode 8 bits
symmetric key size, number of rounds,
authentication algorithm

8 bits

IV 128 bits
Total 400 bits = 50 bytes

Table 6.1: memory space needed in the SAC for each ISAKMP SA

While considering an IPSec SA we obtain the result shown in Table 6.2.

Field Length (worst case)
AH/ESP – key size, authentication algorithm 8 bits
AH/ESP – symmetric key 256 bits
ESP encryption algorithm, number of rounds, IV
mode

8 bits

IV 128 bits
Total 400 bits = 50 bytes

Table 6.2: memory space needed in the SAC for each IPSec SA

We can note that in both cases we need 50 bytes for each SA to be stored in the SAC.

We choose to use, mainly for expansibility purposes, a dimension of 64 bytes for each

SAC entry.

We can now compute the SAC dimensions related to the different numbers of SAC-

entries chosen, as shown in Table 6.3.

Number of entries Dimension (bytes)
16 1024 (1kb)
32 2048 (2kb)
64 4096 (4kb)
128 8192 (8kb)
256 16384 (16kb)
512 32768 (32kb)

Table 6.3: space needed for the SAC depending on the number of entry chosen

6.4.2. Designing the simulation

The simulation we need to write in this phase has only to keep track of what happens in

the cache, when the data read from the file are used as input for the system. This means

that no timings need to be taken into account. Looking at the source and destination IP

addresses read from the data file, the program must be able to determine if the

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 70

considered SA is already in cache or not, and to put it in the SAC when necessary.

Doing those operations the statistics about cache misses and cache distribution over

time can be computed.

6.4.3. The simulation program

The simulation is written in C and it works in the following way:

• It reads one line from the TCP dump file.

• It checks if a SA for the source and the destination IP addresses which has been

read from the file has already been opened. If not, it opens a new one. If that SA

has already been opened, it updates the SA usage counter and the timestamp of

the last usage of that SA. The timestamps used here are the ones taken from the

data file.

• It checks if the SA is already in the SAC, if not two different things can happen:

o there is a free entry in the SAC. In that case the free entry is used for

loading the information related to the considered SA.

o there is not a free entry in the SAC. In that case the least recently used

SAC entry is found and stored out of the SAC. The information related

to the considered SA are then loaded in the freed SAC position.

• During all the operations the appropriate counters (cache misses, SA number,…)

are kept up to date.

The program source code can be found in Appendix B.

6.4.3.1. Data structure used

The main data structures used are two, one for the SAD and one for the SAC.

Those two data structures are simply array of records. We choose to manage the data

structures in the simplest possible way, so we choose to use unsorted arrays accessed in

a sequential way. Obviously, for a real system better data structures and access methods

should be studied, but discussing those topics is beyond the scope of this document.

As stated before, the data structures are based on records (C structures), the first one is

SADel which is designed to contain all the information related to a SA (the one we need

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 71

in our simulation), while the other is SACel that is designed to contain all the

information related to each cached element.

The SADel and the SACel structures are shown in Figure 6.13 and in Figure 6.14.

The SADel structure contains the following fields:

• sourceIP: an integer field used for storing the source IP address (as explained in

section 6.2, the IP addresses were modified for privacy concerns);

• destIP: an integer field used for storing the destination IP address;

• cached: the position in the SAC where the current element of SAD is possibly

stored;

• counter: the SA usage counter. Once this field reach its maximum value (232),

the SA have to be closed as explained in section 1.4.3;

• time: the timestamp of the SA last usage.

 SADel

int sourceIP;
int destIP;
int cached;
unsigned counter;
double time;

Figure 6.13:SADel structure

 SACel

int sourceIP;
int destIP;
double time;
long countUsed;

Figure 6.14: SACel structure

The SACel structure is composed by the following fields:

• sourceIP: an integer field used for storing the source IP address, as in SADel;

• destIP: an integer field used for storing the destination IP address, as in SADel;

• time: the timestamp of the last usage of the cache position;

• countUsed: a counter for computing the statistics on each cache entry reuse.

As wrote before, the two data structure used in the simulation are array composed by

the two C structures shown above. The SAD elements are contained in the SAD array

defined in Figure 6.15 below and shown in Figure 6.17.

struct SADel SAD[MAX_SA];

Figure 6.15: SAD array definition

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 72

The SAC entries are contained in the SAC array defined in Figure 6.16 and shown in

Figure 6.18.

struct SACel SAC[CACHE_SIZE];

Figure 6.16: SAC array definition

int sourceIP;
int destIP;
int cached;
unsigned counter;
double time

SAD

SADel

SADel

SADel

.

.

.

SADel

SADel

Figure 6.17: the SAD array

int sourceIP;
int destIP;
double time;
long countUsed;

SAC

SACel

SACel

SACel

.

.

.

SACel

SACel

Figure 6.18: the SAD array

For the meaning of the CACHE_SIZE and the MAX_SA constants, please refer to

section 6.4.3.2.

A temporary variable called datagram is used in each program cycle. That variable is

based on a data structure called dataT and shown in Figure 6.19. That variable is used to

store the values read from the data file.

 dataT

double time;
int sourceIP;
int destIP;
int sourceTCP;
int destTCP;
int bytes;

Figure 6.19: dataT structure

The fields of the dataT structure are explained below :

• time: is the field used to store the datagram’s timestamp;

• sourceIP: is the field used to store the datagram’s source IP address as explained

for the SACel and the SADel structures;

• destIP: is the field used to store the datagram’s destination IP address;

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 73

• sourceTCP: is the field used to store the originating TCP port; this field is

unused in the program;

• destTCP: is the field used to store the destination TCP port; this field is unused

in the program;

• bytes: this field stores the number of bytes of each datagram. At each value read

from the file we decided to add 34, that is the number obtained by the length of

the IP v.4 headers (20 bytes) and the length of the TCP headers (14 bytes).

6.4.3.2. Simulation options

The options related to each simulation are given through C constants (C define

directive), the available options are:

• CACHE_DIMENSION: defines the cache dimension (number of entries).

• MAX_SA: defines the maximum number of SAs allowed on the host.

• USE_FIN_PACKETS: defines whether or not to use the TCP FIN packets. The

FIN packets are used to close the SAs when that constant is defined.

• CLOSE_UNUSED: defines whether or not to use the timeout on the opened

SAs. That option is enabled when this constant is defined.

• CLOSE_TIME: defines the SA timeout to use (when the CLOSE_UNUSED

option is active).

• CHECK_TIME: defines the checking time for SAs exceeding the timeout (when

the CLOSE_UNUSED option is active).

• PRINT_INSTANT_STATISTICS: when defined it makes the program print the

number of opened SAs and the number of cache misses on the standard output.

• PRINT_CACHE_DISTRIB: when defined it makes the program print the

distribution of the cache misses over 1s intervals.

• PRINT_SA_DISTRIB: when defined it makes the program print the distribution

of the opened and closed SAs over 1s intervals.

• PRINT_CACHE_REUSE: when defined it makes the program print the number

of reuse for each SAC element before its closure.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 74

• PRINT_SA_REUSE: when defined it makes the program print the number of

reuse for each SA before its closure.

• QUICK_MODE: when defined it makes the program to threat the SAs as created

with IKE phase 2 – quick mode (two SAs are created each time a new SA is

needed for having a bi-directional communication channel).

6.4.4. The results of the simulations

In this paragraph the results obtained running the simulations varying the cache

dimension are reported. Those results are presented through graphs representing the

cache misses over time, and through the output provided by the program at the end of

each simulation run. The numerical output of the program provides the following

information:

• Total number of datagrams analyzed: the total number of datagrams taken from

the data file. This parameter is constant for all the simulation runs being that we

use the same data file for all of them.

• Average dimension of datagrams: this is the average dimension in byte of the

analyzed datagrams. The dimension of each datagram is obtained adding 34 to

the packet’s dimension read from the data file. Those 34 bytes are given by 20

bytes of IP headers and 14 bytes of TCP headers. As a matter of fact the

dimension of the headers are not reported in the data file.

• Average data rate: this is the average throughput, obtained dividing the sum of

the dimension of all the datagram passed through the system, by the ending time

of the simulation.

• Average connections managed per second: this parameters reports how many IP

datagrams are managed in each second by the system and it is obtained dividing

the number of datagrams passed through the system by the total simulation time.

• Average reuse of each SA: this gives the average number of time that each SA is

reused during its lifetime.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 75

• Total cache misses: this gives the total number of cache misses happened during

the simulation run

• Compulsory misses: this gives the number of unavoidable cache misses

happened during the simulation run. The unavoidable cache misses are the ones

happening the first time the SAs are used.

• Avoidable cache misses: this gives the total number of avoidable misses

happened during the whole simulation. With “avoidable misses” we mean the

misses that can be avoided having a cache big enough for containing all the

SAD entries. Those are the misses happening for each SA after it has been used

for the first time.

• Average reuse of each cache position before replacing: this gives the average

number of times that each cache entry is reused before being discarded.

In the following subsections the obtained results are shown.

6.4.4.1. Not closing any SA

In this case we report the results of the simulations ran considering 16, 32, 64, 128, 256,

and 512-entry caches. In Figure 6.20, Figure 6.21, Figure 6.22, and Figure 6.23 are

represented the results obtained with the last four cache dimensions as total cache

misses over time, compulsory cache misses over time, and avoidable (total minus

compulsory) cache misses over time. The other curve shown in each graph represents

the number of SAs opened over time.

Please note that in all those four figures, the curve representing the number of SAs

overlaps the one representing the number of compulsory cache misses.

Since the first part of the numerical results obtained here (the data rate, the SA reuse,

the number of analyzed datagrams, and the number of connections managed per second)

is always the same for each simulation run performed in this subsection, we will report

it only in the first case shown.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 76

Here follow the numerical results obtained for a 16-enty cache:
Total number of datagrams analyzed 1789994
Average dimension of datagrams (34bytes of header): 170.36bytes
Average data rate: 330.876kbit/s
Average connections managed per second: 248.61
Average reuse of each SA: 483.13

Total cache misses: 798593 (44.61%)
Compulsory misses: 3705
Avoidable cache misses: 794888 (44.41%)
Average reuse of each cache position before replacing 2.24

Here follow the numerical results obtained for a 32-enty cache:
Total cache misses: 382498 (21.37%)
Compulsory misses: 3705
Avoidable cache misses: 378793 (21.16%)
Average reuse of each cache position before replacing 4.68

In Figure 6.20 a graphic representation of the results obtained for a 64-entry cache is

shown. The numerical results are shown below:
Total cache misses: 124369 (6.95%)
Compulsory misses: 3705
Avoidable cache misses: 120664 (6.74%)
Average reuse of each cache position before replacing 14.39

Figure 6.20: simulation results over time with a 64-entry cache

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 77

In Figure 6.21 a graphic representation of the results obtained for a 128-entry cache is

shown. The numerical results are shown below:
Total cache misses: 25122 (1.40%)
Compulsory misses: 3705
Avoidable cache misses: 21417 (1.20%)
Average reuse of each cache position before replacing 71.25

Figure 6.21: simulation results over time with a 128-entry cache

In Figure 6.22 a graphic representation of the results obtained for a 256-entry cache is

shown. The numerical results are shown below:
Total cache misses: 11892 (0.66%)
Compulsory misses: 3705
Avoidable cache misses: 8187 (0.46%)
Average reuse of each cache position before replacing 150.52

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 78

Figure 6.22: simulation results over time with a 256-entry cache

In Figure 6.23 a graphic representation of the results obtained for a 512-entry cache is

shown. The numerical results are shown below:
Total cache misses: 8056 (0.45%)
Compulsory misses: 3705
Avoidable cache misses: 4351 (0.24%)
Average reuse of each cache position before replacing 222.19

Figure 6.23: simulation results over time with a 512-entry cache

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 79

The obtained results show us that 16-entry or 32-entry caches are fairly not useful

causing a too high number of avoidable cache misses. The differences between a 64-

entry cache and a 128-entry cache are quite high (the number of avoidable cache misses

is divided by 5.6). Less differences can be obtained using a 256-entry cache: with

respect to a 128-entry cache the number of avoidable cache misses is divided by 2.6. It

seems that using a 512-entry cache gives very few benefits (with respect to a 256-entry

cache) from the point of view of avoidable cache misses.

6.4.4.2. Closing the SAs exceeding a 30 min. timeout

In this case, as in the following ones, we report the results of the simulations done with

64, 128, 256 entry caches only, being those the more significant ones. In Figure 6.24,

Figure 6.25, and Figure 6.26 are shown the results obtained with those three cache

dimensions as total cache misses over time, compulsory cache misses over time, and

avoidable (total-compulsory) cache misses over time. The other curve shown in each

graph represents the number of SAs opened over time.

Since the first part of the numerical results obtained here (the data rate, the SA reuse,

the number of analyzed datagrams, and the number of connections managed per second)

is always the same for each simulation run performed in this subsection, we will report

it only in the first case shown.

In Figure 6.24 a graphic representation of the results obtained for a 64-entry cache is

shown. The numerical results are shown below:
Total number of datagrams analyzed 1789994
Average dimension of datagrams (34bytes of header): 170.36bytes
Average data rate: 330.876kbit/s
Average connections managed per second: 248.61
Average reuse of each SA (before closing): 421.77

Total cache misses: 124369 (6.95%)
Compulsory misses: 4244
Avoidable cache misses: 120125 (6.71%)
Average reuse of each cache position before replacing 14.39

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 80

Figure 6.24: simulation results over time with a 64-entry cache, considering a 30min. timeout on the
unused SAs

In Figure 6.25 a graphic representation of the results obtained for a 128-entry cache is

shown. The numerical results are shown below:
Total cache misses: 25122 (1.40%)
Compulsory misses: 4244
Avoidable cache misses: 20878 (1.17%)
Average reuse of each cache position before replacing 71.25

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 81

Figure 6.25: simulation results over time with a 128-entry cache, considering a 30min. timeout on the
unused SAs

In Figure 6.26 a graphic representation of the results obtained for a 256-entry cache is

shown. The numerical results are shown below:
Total cache misses: 11892 (0.66%)
Compulsory misses: 4244
Avoidable cache misses: 7648 (0.43%)
Average reuse of each cache position before replacing 150.52

We can note that, using a 30 minutes timeout for the unused SAs, we obtain slightly less

avoidable cache misses and the same number of total cache misses, with respect to the

same cache dimensions without considering any closure policy. The number of

compulsory cache misses grows due to the fact that some SAs which has been closed

for having exceeded the timeout need to be re-opened later in the simulation (see also

section 6.3).

The fact that this policy is very efficient with respect to SA reusing and system’s

resources is also shown by the average reuse of each SA that is very similar to the one

obtained with no timeout set.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 82

Figure 6.26: simulation results over time with a 256-entry cache, considering a 30min. timeout on the
unused SAs

6.4.4.3. Using the TCP FIN packets

In Figure 6.27 and Figure 6.28 are represented the results obtained with a 128 and a

256-entry caches. Those graphs show the number of total cache misses over time, the

number of compulsory cache misses over time, and the number of avoidable (total-

compulsory) cache misses over time. The other curve shown in each graph represents

the number of SAs opened over time.

Since the first part of the numerical results obtained here (the data rate, the SA reuse,

the number of analyzed datagrams, and the number of connections managed per second)

is always the same for each simulation run performed in this subsection, we will report

it only in the first case shown.

The numerical results for a 64-entry cache are shown below:
Total number of datagrams analyzed 1789994
Average dimension of datagrams (34bytes of header): 170.36bytes
Average data rate: 330.876kbit/s
Average connections managed per second: 248.61
Average reuse of each SA (before closing): 140.29

Total cache misses: 128601 (7.18%)
Compulsory misses: 12759
Avoidable cache misses: 115842 (6.47%)
Average reuse of each cache position before replacing 13.92

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 83

In Figure 6.27 a graphic representation of the results obtained for a 128-entry cache is

shown. The numerical results are shown below:
Total cache misses: 31804 (1.78%)
Compulsory misses: 12759
Avoidable cache misses: 19045 (1.06%)
Average reuse of each cache position before replacing 56.28

Figure 6.27: simulation results over time with a 128-entry cache, using the TCP FIN packets for closing
the SAs

In Figure 6.28 a graphic representation of the results obtained for a 256-entry cache is

shown. The numerical results are shown below:
Total cache misses: 19113 (1.07%)
Compulsory misses: 12759
Avoidable cache misses: 6354 (0.35%)
Average reuse of each cache position before replacing 93.65

The policy of using the TCP FIN packet for deciding whether to close a SA seems to be

not very efficient. It allows a slightly diminishing of the avoidable cache misses due to

the lower number of opened SAs at a given time, but it causes a dramatic increase of the

compulsory cache misses due to the fact that some SAs closed for having received a

TCP FIN packet often need to be reopened. The bad behavior provided by the usage of

this technique is also confirmed by the average reuse of each SA before being closed: in

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 84

this case the result obtained is really different from the one obtained with no closure

policy or with the closure policy based on a timeout.

Figure 6.28: simulation results over time with a 256-entry cache, using the TCP FIN packets for closing
the SAs

6.4.4.4. Closing the SAs exceeding a 30 min. timeout and using the TCP FIN

packets

In Figure 6.29 and Figure 6.30 are displayed the results obtained with a 128 and a 256-

entry caches. Those graphs show the number of total cache misses over time, the

number of compulsory cache misses over time, and the number of avoidable (total-

compulsory) cache misses over time. The other curve shown in each graph represents

the number of SAs opened over time.

Since the first part of the numerical results obtained here (the data rate, the SA reuse,

the number of analyzed datagrams, and the number of connections managed per second)

is always the same for each simulation run performed in this subsection, we will report

it only in the first case shown.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 85

The numerical results for a 64-entry cache are shown below:
Total number of datagrams analyzed 1789994
Average dimension of datagrams (34bytes of header): 170.36bytes
Average data rate: 330.876kbit/s
Average connections managed per second: 248.61
Average reuse of each SA (before closing): 135.27

Total cache misses: 128601 (7.18%)
Compulsory misses: 13233
Avoidable cache misses: 115368 (6.45%)
Average reuse of each cache position before replacing 13.92

In Figure 6.29 a graphic representation of the results obtained for a 128-entry cache is

shown. The numerical results are shown below:
Total cache misses: 31804 (1.78%)
Compulsory misses: 13233
Avoidable cache misses: 18571 (1.04%)
Average reuse of each cache position before replacing 56.28

Figure 6.29: simulation results over time with a 128-entry cache, when a 30min. timeout on the unused
SAs is set and using the TCP FIN packets for closing the SAs

In Figure 6.30 a graphic representation of the results obtained for a 256-entry cache is

shown. The numerical results are shown below:
Total cache misses: 19113 (1.07%)
Compulsory misses: 13233
Avoidable cache misses: 5880 (0.33%)
Average reuse of each cache position before replacing 93.65

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 86

In this case are again pretty evident the bad effects caused by closing the SAs basing on

the TCP FIN packets. This technique should never be used.

Figure 6.30: simulation results over time with a 256-entry cache, when a 30min. timeout on unused SAs
is set and using the TCP FIN packets for closing the SAs

6.4.4.5. Conclusions

In all the four examined cases the results about the avoidable cache misses are very

similar, however obtained with different combinations of total and compulsory misses.

The data about the reuse of each SAC element before being discarded is different in the

four considered cases, strictly depending it on the SA reuse (see section 6.3 for further

considerations about that topic).

Consideration about the number of avoidable cache misses leads us to prefer the SAC to

be composed of 128 elements (16kb) or of 256 elements (32kb). Further considerations

can be done also considering the SA creation phase, as reported in section 6.4.7.

6.4.5. Reuse of each cache entry

Before proceeding it is really important to verify if we can obtain any benefits caching

the SAs. This can be done by evaluating the data about the reuse of each cache entry. As

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 87

a matter of fact we can obtain very few cache misses, but, if each cache element were

reused very few times, we would have no real benefits using that cache.

In the results of the simulations (section 6.4.4) it is reported the average reuse of each

cache entry before being discarded. From that data we can see that using a cache seems

to be a very good idea. As a matter of fact, in each considered case, each cache entry is

used many times (in average 71 times for a 128-entry cache and 150 for a 256-entry

cache when no SA closing policy has been adopted).

The reuse of each cache entry is shown in Figure 6.31 (128-entry cache and no timeout),

Figure 6.32 (256-entry cache and no timeout), and Figure 6.33 (128-entry, 30 minutes

timeout). In those graphs each number shown on the abscissas axe represents a cache

entry replace. For example, the number 1 on that axe represents the first cache

replacement occurred. The numbers shown on the ordinates axe represent the number of

times each entry had been reused before a replacement.

The different shapes of the three graphs are due to the different order of the

replacements obtained considering different cache sizes. The different number of bars

shown in those graphs is due to the different number of cache replacements obtained

considering different cache dimensions.

Figure 6.31: reuse of each cache entry before being discarded on a 128-entry cache

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 88

Figure 6.32: reuse of each cache entry before being discarded on a 256-entry cache

Figure 6.33: reuse of each cache entry before being discarded on a 128-entry cache, when a 30min.
timeout on the unused SAs is set

From those figures we can also note that there are some SAs remaining in the cache for

a very long time, having a very high reuse.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 89

6.4.6. Using a different cache replace policy

We tried using a random replace policy ([P-H] , pp. 380-402) instead of the LRU one

and the results we obtained was considerably worse. This confirm us that there really is

a temporal locality that can be exploited using the LRU replacing policy and an

adequate number of cache elements.

6.4.7. Taking into account the SA creation phase

Since the data files we have do not contain any data about SAs creation, the results

shown in the previous section are about a system where all the SAs are supposed to

have already been created.

Looking at the diagrams which show the distribution of the newly opened SAs and

which are reported in section 6.3 (Figure 6.5, Figure 6.6, and Figure 6.7), we could see

that the creation of new SAs is pretty uniformly distributed over time. This means that,

for simulation purposes only, we can try reserving a certain number of entries in the

SAC for the creation of new SAs. Looking at the diagrams it seems that reserve 20

cache position could be a good (and probably conservative) choice. This is done just for

causing a SAC space diminishing like the one that would have been caused by the

creation of new SAs during the normal working of a real system, since this operation

also uses the SAC memory space. The simulation can be run again using 108 and 236 as

SAC dimensions.

In Figure 6.34 are shown the results obtained with a 108-entry cache without using any

SA closing policy. The average results follow here:
Total number of datagrams analyzed 1789994
Average dimension of datagrams (34bytes of header): 170.36bytes
Average data rate: 330.876kbit/s
Average connections managed per second: 248.61
Average reuse of each SA: 483.13

Total cache misses: 34625 (1.93%)
Compulsory misses: 3705
Avoidable cache misses: 30920 (1.73%)
Average reuse of each cache position before replacing 51.70

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 90

Figure 6.34: simulation results over time with a 108-entry cache

In Figure 6.35 are shown the results obtained with a 236-entry cache without using any

SA closing policy. The average results follow here:
Total cache misses: 13027 (0.73%)
Compulsory misses: 3705
Avoidable cache misses: 9322 (0.52%)
Average reuse of each cache position before replacing 137.41

Figure 6.35: simulation results over time with a 236-entry cache

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 91

The results obtained for the 236-entry cache are pretty much the same of the ones

obtained with the 256-entry cache, while the diminishing of the number of entries

influences more the 128-entry cache. As a matter of fact throwing out 20 entries form

the 128-entry cache, we left the 15,6% of the elements, while for the 256-entry cache

we have a reduction of only the 7.8%.

6.4.8. Considering the SAs created as in “IKE Phase 2 – quick mode”

In the previously discussed simulation, we did not care about the fact that, when IKE

Phase 2 quick mode is performed, two SAs are created at the same time (see section

3.4.2). Those two SAs are created to accomplish the needing of bi-directional

communications. The results shown before was obtained creating each SA the first time

it was needed, without considering the communications in the opposite direction.

In this subsection we show the results obtained running a slightly modified version of

the simulation program. Here, when a new SA is opened, another SA between the same

two IP addresses but in the opposite direction is automatically opened too.

We have to note that in this section we are not adding any information about the SA

creation phase (such as functionalities or timings) to the simulation, we only force the

system to a slightly different usage of the cache that should be closest to the real one.

The obtained results (without considering any SA closure policy) are shown below.

Considering a 64-entry cache we obtain:
Total cache misses: 124852 (6.97%)
Compulsory misses: 3806
Avoidable cache misses: 121046 (6.76%)

Considering a 108-entry cache we obtain:
Total cache misses: 34890 (1.95%)
Compulsory misses: 3806
Avoidable cache misses: 31084 (1.74%)

Considering a 128-entry cache we obtain:
Total cache misses: 25326 (1.41%)
Compulsory misses: 3806
Avoidable cache misses: 21520 (1.20%)

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 92

Considering a 256-entry cache we obtain:
Total cache misses: 12071 (0.67%)
Compulsory misses: 3806
Avoidable cache misses: 8265 (0.46%)

We can note that the obtained results about the cache misses are pretty much the same

as obtained in the previous sections. We can note that the number of compulsory misses

is a little bit increased here. This is due to the fact that some SAs that would not need to

be opened are anyway opened. As a matter of fact, in the previous simulations, only the

needed SAs was opened, while here a pair of SAs is anyway opened whether or not a

bi-directional channel is needed.

The results about the number of created SAs when no closure policy is adopted are also

pretty much the same as the ones shown in section 6.3. That distribution is displayed in

Figure 6.36. The only data which slightly change are the ones about the reuse of the

SAs and of the cache entries. As a matter of fact, using this SA creation procedure, we

force the system to open some not-needed (and not used) SAs, making the SA reuse and

the cache entry reuses to lower. For example the average SA reuse goes from 483 to

470.

Since the SAs are created in pairs, an alternative cache structure can be thought. We can

think about using cache entries which can contain the information of a pair of SAs each.

That solution would give no advantage in our system, being that the information

contained in each single-SA cache entry (mainly the AES key and the IV) must anyway

be contained in the new cache structure too. Therefore we would obtain no memory

saving and we would lower the flexibility of the cache. That technique would also

introduce a further complication for managing the ISAKMP SAs that are bi-directional

and do not need a double cache entry.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 93

Figure 6.36: SA creation distribution over 1s intervals when IKE Phase 2 quick mode procedure is used
for opening the SAs

6.5. Simulating the delay introduced by the crypto- processor

To simulate the delay introduced by the crypto-processor, we need to compute the

delays introduced by the various operations which need to be performed. These

operations are: the data transfer between the host and the smart card, the encryption or

decryption of the data, the time needed for dealing with an element not present in the

SAC or with an element present in the SAC, the storing time of a SAC element. Those

delays will then be used in the simulation program to compute the time that each packet

needs to pass through the system.

6.5.1. Computation of the delays

6.5.1.1. Host–smart card data transfer

As stated before, we suppose to use a 32-bit standard 66MHz PCI bus as hardware

interface between the host and the crypto-processor. Therefore we will use the data

taken by the PCI specification to compute the communication channel delays.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 94

The PCI bus in burst mode needs one cycle for the address and n divided by 4 cycles for

the data, where n is the number of bytes to be transferred. Being the bus at 66MHz, each

cycle takes 1 over 66*106 that is 1.515*10-8s. We consider as initial time one cycle,

since there should be no conflict on the data bus. As a matter of fact the bus is dedicated

to the crypto processor and all the transfer requests are sequentially done.

The time we need to transfer something on the bus, is given by:

t
b

DbD cycleinitialtrans *1
4

)(��
�

�
��
�

� +		
�

�+= 7

where:

• Dinitial is the time needed to start the communication. We can assume for it the

value of 1.515*10-8s.

• b is the number of bytes we have to transfer: this parameter can be obtained by

the command table and in each case we are considering here it is given by the

number of data byte plus 4 (one 32-bit words of command code and options).

The first time the SA is used (depending on the mode used for encryption) the

IV should also need to be loaded in the smart card. In that case 16 (equivalent to

128 bits) need be added to the data dimension.

• tcycle is the time needed by a PCI bus cycle that is, as stated before, 1.515*10-8s.

The delay introduced by the data transferring is given by:

10*515.1*1
4

10*515.1)(88 −−
��
�

�
��
�

� +		
�

�+= b
bDtrans

When the data to be encrypted or decrypted are to be transferred through a

symmEncrypt or a symmDecrypt command, a further 32-bit word of command code

must be added, since those command are of the C format (see section 4.2.4). In those

cases the previous formula become:

7 The symbol �x� means “the smallest integer greater than or equal to x” This is equivalent to the C

function called ceil.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 95

10*515.1*2
4

10*515.1)(88 −−
��
�

�
��
�

� +		
�

�+= b
bDtrans

6.5.1.2. Encryption/decryption

This delay can be computed considering the worst-case-time needed to process a data

block, the number of blocks to be processed, and a fixed initial delay. The initial delay

is needed for setting up the AES hardware with the key to be used (key enrolling). We

can use a formula like the following one:

t
c

Dt
c

DcD encsetupencsetupenc *
16

*
128

*8
)(

�

�+=		

�

�+=

where:

• Dsetup is the initial fixed delay

• c is the number of bytes to be processed. Here we consider the worst possible

case, so we also take into account also the IP header dimension: this corresponds

to consider the ESP IPSec protocol used in tunnel mode.

• tenc is the time we need for the encryption of one data packet.

Looking at the AES fast hardware implementation studies done at ALaRI (see [MAC-

MAR] for more details), we can assume the following values for the previous variables:

Dsetup: 17 clock cycles * cycle time

tenc: 22 clock cycles * cycle time

The decryption process is slower than the encryption one and for that reason we choose

to use the data relative to the slowest process.

Considering the same studies on AES we can see that running the AES hardware at

50MHz we can obtain a throughput of 290Mbit/s with a continuous flux of information

(i.e. giving to that hardware a continuous flux of data related to the same AES key). In

our system the flux will not be continue. Therefore we will have to choose a higher

clock rate than 50MHz. The values for Dsetup and tenc considering various clock rates are

reported in Table 6.4.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 96

Clock rate 50MHz 55MHz 60MHz 70MHz

Dsetup 3.4*10-7 3.09*10-7 2.83*10-7 2.42*10-7

tenc 4.4*10-7 4*10-7 3.67*10-7 3.14*10-7

Table 6.4: encryption timings for different AES hardware clock rates

6.5.1.3. Element present in the SAC

In this case the delay introduced is very low. If a SA element were cached, the SAC

position number would be stored in the SAD, that would anyway be consulted. The

delay can be considered to be 5*10-9 sec.

6.5.1.4. Element not present in the SAC

In this case there are two different possibilities: there is a free SAC slot or there is not a

free SAC slot.

In the former case, the delay is given by the sum of the time needed to transfer the SA

data (from the host to the crypto-processor) and of the time needed to decrypt the key

and to check the CRC. In the latter case, we must also add the store time of the

discarded SAC element (the one that need to be stored out for freeing a memory

position in the crypto-processor). We consider that our system uses the simple 16-bit

CRC algorithm to check the consistency of the data stored out of the smart card. The

CRC is computed over the contents of a SAC element, then the result is encrypted with

the key and stored on the host. The time needed for comparing the CRC result with the

stored CRC can be neglected, since that operation is performed on two bytes only.

We have:

)(10*515.1*1
4

10*515.1*
128

16

)()()8/(

88 bD
b

t
k

D

bDbDkDD

crcenc
d

setup

crctransdencmiss

+��
�

�
��
�

� +		
�

�++		

�

� ++=

=++=

−−

)(10*515.1*2
4

10*515.1*2*
128

16

)0()()()8/(

88 bD
b

t
k

D

DbDbDkDD

crcenc
e

setup

transcrctranseencstore

+��
�

�
��
�

� +		
�

�++		

�

� ++=

=+++=

−−

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 97

where:

• Dsetup and tenc are the same ones considered in the computation of the encryption

delay.

• ke and kd are respectively the key length (bit) of the SA to be stored out from the

crypto-processor and the key length of the SA to be put in the SAC. Both the ke

and the kd values are considered to be 256 (the maxim length of an AES key).

The 16 bits added in the formula are the ones related to CRC result.

• b is the number of bytes to be exchanged between the host and the crypto

processor to load the information about a SA.

• Dcrc is the delay introduced by the data “hashing” function chosen, the CRC. The

CRC needs to operate on b-2 bytes, since 2 bytes are generated by the CRC

itself:

tbbD crccrc *)2()(−=

In the previous formula tcrc is the time we need to apply CRC to a byte. In CRC

hardware implementations a throughput of 200Mbit/s can be easily reached, so

that tcrc can be considered to be 8 over 200*106 that is 4*10-8.

The Dtrans(0) delay is introduced to take into account that a store request must be done

by the host through the getSAinfo command.

Considering all the timings introduced above, the Dmiss and Dstore formulas become:

)(10*515.1*1
4

10*515.1*
128

16

)()()8/(

88 bD
b

t
k

D

bDbDkDD

crcenc
d

setup

crctransdencmiss

+��
�

�
��
�

� +		
�

�++		

�

� ++=

=++=

−−

)(10*515.1*2
4

10*515.1*2*
128

16

)()()8/(

88 bD
b

t
k

D

bDbDkDD

crcenc
e

setup

crctranseencstore

+��
�

�
��
�

� +		
�

�++		

�

� ++=

=++=

−−

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 98

b can be assumed to be 66 (64 bytes taken from the SAC plus 2 of CRC). The CRC is

applied only to the 64 bytes of the SAC entry. The two delays can now be considered to

be:

10*56.210*87.2*3

10*4*)2(10*515.1*1
4

10*515.1*
128

16256

67

888

−−

−−−

+++=

=−+��
�

�
��
�

� +		
�

�++		

�

� ++=

tD

b
b

tDD

encsetup

encsetupmiss

10*56.210*18.3*3

10*4*)2(10*515.1*2
4

10*515.1*2*
128

16256

67

888

−−

−−−

+++=

=−+��
�

�
��
�

� +		
�

�++		

�

� ++=

tD

b
b

tDD

encsetup

encsetupstore

As stated before, when there is no free slot in the SAC, the delay is given by

Dmiss+Dstore.

6.5.1.5. Conclusions about the delays

Considering the results obtained in the previous subsections, we can state that:

• Each operation on the smart-card introduces a delay given by:

2*Dtrans+Denc

• Each cache access introduces a fixed delay Dacc,

• Each cache miss introduces an additional delay of

o Dmiss, if there is a free slot in the SAC

o Dmiss+Dstore, if there is no room for other SA in the SAC and a SA have

to be swapped out

When the value of the parameters has been fixed, Dmiss, Dstore, and Dacc are constant.

Dtrans and Denc depend on the number of bytes contained in the datagram to be

processed.

6.5.2. Designing the simulation

The simulation we need to write here has still to provide a trace of the cache usage, but

the computation of the delays introduced by the various operations done in the system

must also be taken into account. In the previous section we explained what parts of the

system arise those delays and how to compute them, therefore our simulation will have

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 99

to use those information to compute the time needed by each datagram to pass through

the system, basing on the operations to be performed on that datagram.

6.5.3. The simulation program

The C program used for the simulation including the delays is reported in Appendix C.

It is based on the one used in the section 6.4 and explained in the subsection 6.4.2.

6.5.3.1. The main data structures

The SAC and SAD data structures we use here are the same ones we used for the

simulation without delays. We explained them in section 6.4.3.1 and we showed them in

Figure 6.17 and in Figure 6.18.

The dataT structure we use here was slightly modified to store some additional

information we need to compute the delays. The new dataT structure is shown in Figure

6.37.

 dataT

double time;
double theorTime;
int sourceIP;
int destIP;
int sourceTCP;
int destTCP;
int bytes;

Figure 6.37: the dataT structure

The new field added here is called theorTime and it is used to store the theoretical time

at which that datagram would have been processed if there were no delays due to IPSec

(the communication on the system where the data was taken is based on IP only). The

time field is now used to store the real timestamp assigned to the considered datagram.

As a matter of fact the original timestamps can need some modifications. This is due to

the fact that the delays introduced by the system can make the datagrams to take longer

processing times than the ones allowed by the original timestamps of the successive

datagrams.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 100

6.5.3.2. How the simulation program works

As stated before, the simulation we considered here works pretty much in the same way

of the one described in section 6.4.3.1. Here the main differences are that the datagram

processing delays are added for each executed operation. The delays are computed

using the formulas explained in section 6.5.1.

When a SA is already cached the delay introduced is given by the data transfer between

the host and the crypto-processor and by the encryption/decryption time of the data.

When a SA is not cached also the delays due to the cache miss are added to the previous

ones. If the sum of the introduced delays added to the datagram’s timestamp is higher

than the next datagram’s timestamp, the latter is delayed. Therefore it takes a new

timestamp composed by the previous datagram’s timestamp plus the processing time

and a little interval of time between the two packets.

In this way we are able to compute the throughput that can be obtained by the system.

That throughput can be compared with the theoretical throughput, obtained considering

the original timestamps read in the data file. The throughput is computed basing on time

intervals set by the PRINT_THROUGHPUT_DISTRIB C constant. That constant has

been set to 0.25s. Therefore, the real throughput is computed each time an interval of

time higher that 0.25s is detected between the timestamp of the new datagram

considered and a timestamp stored in memory (corresponding to the last throughput

computation). The throughput is computed as the number of bytes processed in that

interval divided by the interval length. For obtaining the theoretical throughput, the

same operations are done considering the theoretical timestamps of the same datagrams.

An average value of the throughput is computed at the end of the simulation, while

instant values can be saved in a file for successive computations.

Here the results are put in separate files allowing to obtain more results per simulation

run. The files that can be obtained are described in the following section.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 101

6.5.3.3. Simulation parameters

The simulation options can be set through C constants (C define directive). The

available options are:

• CACHE_DIMENSION: defines the cache dimension.

• MAX_SA: defines the maximum number of SAs allowed on the host.

• USE_FIN_PACKETS: defines whether or not to use the TCP FIN packets. The

FIN packets are used when this constant is defined.

• SCALE_TIME: this parameter is used for scaling all the timestamps to obtain the

desired theoretical throughput. For reaching an average throughput around

200Mbit/s we have to set this parameter to 0.00161.

• CLOSE_UNUSED: defines whether or not to use the a timeout on the opened

SAs. The option is enabled when this constant is defined.

• CLOSE_TIME: defines the SA timeout to use (when the previous option is

active).

• CHECK_TIME: defines the checking time for SAs exceeding the timeout.

• MIN_DISTANCE: defines the minimum time that should pass between two

successive datagrams. This parameter is used when a datagram has to be

delayed; in that case the datagram’s timestamp is obtained as the finishing

processing time of the precedent datagram plus MIN_DISTANCE. This

parameter is set to 1*10-12s.

• PRINT_CACHE_DISTRIB: when defined it makes the program save the

distribution of the cache misses over 0.25s intervals into the “cacheDistrib.txt”

file. That file contains the timestamps in the first column, the number of total

cache misses in the second one, and the number of compulsory cache misses in

the third one.

• PRINT_THROUGHPUT_DISTRIB: when defined it makes the program save the

throughput obtained by the system and computed over the intervals specified by

the constant itself into the “throughput.txt” file. That file contains the

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 102

timestamps in the first column and the throughput, that correspond to that

timestamps, in the second column.

• CHANNELL: it is the corresponding to the tcycle parameter described in section

6.5.1.1. Here is set to 1.515*10-8s.

• CHANNELL_INITIAL: it is the Dinitial parameter used in section 6.5.1.1. Here is

set to 1.515*10-8s.

• CACHED_DELAY: it is the delay introduced by a SA that is already in cache as

described in section 0. Here this constant is set to 5*10-9

• ENC_TIME: it is the value corresponding to the tenc parameter described in

section 6.5.1.2 (see the following section for indication about the value set here).

• ENC_SETUP: it is the value corresponding to the Dsetup parameter described in

section 6.5.1.2 (see the following section for indication about the value set here).

• SAINFO_LEN: it is the number of bytes to be transferred between the host and

the crypto-processor when a cache miss or a store operation occurs. The

parameter is set to 66 bytes as described in section 6.5.1.4.

• KEY: it is the number of blocks to be encrypted. The value 3 is obtained by the

two blocks which compose the key, plus a block for the CRC result as described

in 6.5.1.4.

• CRC_TIME: it is the time we need to compute the CRC over a byte. As

described in section 6.5.1.4, we can choose a value of 4*10-8s for that parameter.

• QUICK_MODE: when defined it makes the program to threat the SAs as created

with IKE phase 2 – quick mode (two SAs are created each time a new SA is

needed for having a bi-directional communication channel).

6.5.4. The results of the simulations

All the simulations here were run setting the SCALE_TIME parameter to 0.00161 to

obtain a theoretical average throughput (on all the datagrams analyzed) around

200Mbit/s (200.7Mbit/s).

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 103

We have to take into account that in this phase we scaled the timestamps to reach the

desired throughput, but, in a real system, that throughput is usually reached in a

different way. There usually is a higher number of opened connections (SAs, in our

case). This may introduce some approximations from the point of view of SA managing

and caching. Probably a better estimation of these effects could be done only using data

coming from a real 200Mbit/s system.

Analyzing the results of the simulations we will see that the encryption time parameters

can influence the cache dimension we need. A cache dimension that guarantees the

desired throughput using a certain clock rate for the AES hardware can fail providing

the same performance using a lower clock rate.

The theoretical throughput shown in each graph of this section is obtained running the

simulation program with all the timing parameters set to 0. This would be the

throughput of the system when no delay were introduced by the crypto system (or if the

delays are smaller than the minimum interval between successive datagrams).

The throughput is everywhere computed over 0.25s intervals8: using different interval

widths can give different throughput curve shapes, always leading to the same results,

since the two curves plotted in the graphs are obtained using the same value for this

parameter.

6.5.4.1. Running the AES hardware at 50MHz

As explained in section 6.5.1.2, considering a 50MHz clock for the AES hardware, the

ENC_TIME and ENC_SETUP parameters have to be respectively set to 4.4*10-7 and to

3.410-7.

The throughput obtained for a 64-entry cache, and for a 256-entry cache is reported in

Figure 6.38 and in Figure 6.39. From that figures can be pointed out that the cache

dimensions influence very few the throughput of the system in this situation. As a

matter of fact the two graphs differ very few while the cache dimension in the two cases

differ for a factor of four. We can state that in this case the cache dimension parameter

8 The throughput is always obtained computing the number of bytes going through the system over an

interval of time.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 104

“is dominated” by the encryption time parameter that partially hides the effects of the

former parameter.

No one of the cache dimensions here considered can guarantee the desired throughput

with such a slow cryptographic hardware.

Figure 6.38: throughput obtained using a 64-entry cache and an AES hardware running at 50MHz

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 105

Figure 6.39: throughput obtained using a 256-entry cache and an AES hardware running at 50MHz

6.5.4.2. Running the AES hardware at 55MHz

As explained in section 6.5.1.2, considering a 55MHz clock for the AES hardware, the

ENC_TIME and ENC_SETUP parameters have to be respectively set to 4*10-7 and to

3.09*10-7.

The throughput obtained for a 64-entry cache, for a 128-enty cache, and for a 256-entry

cache is respectively reported in Figure 6.40, in Figure 6.41 and in Figure 6.42. From

that figures it can be pointed out that using a 64 cache does not allow to obtain the

required throughput. A 128-entry and a 256-entry cache seem allowing the system to

almost provide the desired throughput. This can also be seen by the numerical results

obtained from the simulations: the average throughput obtained for the 64-entry cache is

188.65Mbit/s, the one obtained for the 128-entry cache is 198.10Mbit/s, and the one

obtained for the 256-entry cache is 199.15Mbit/s. The average theoretical throughput is

200.70Mbit/s.

The performance would probably be more safely guaranteed with a higher AES

hardware clock.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 106

Figure 6.40: throughput obtained using a 64-entry cache and an AES hardware running at 55MHz

Figure 6.41: throughput obtained using a 128-entry cache and an AES hardware running at 55MHz

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 107

Figure 6.42: throughput obtained using a 256-entry cache and an AES hardware running at 55MHz

6.5.4.3. Running the AES hardware at 60MHz

As explained in section 6.5.1.2, considering a 60MHz clock for the AES hardware, the

ENC_TIME and ENC_SETUP parameters have to be respectively set to 3.67*10-7 and to

2.83*10-7.

The throughput obtained for a 64-entry cache, for a 128-entry cache, and for a 256-enty

cache is respectively reported in Figure 6.43, in Figure 6.44, and in Figure 6.45. From

that graphs we can point out that using a 60MHz clock rate for the AES hardware we

can reach the desired performance using a 128-entry cache. A 64-entry cache still

cannot be used.

The numerical data for the throughput here obtained are 196.35Mbit/s for the 64-entry

cache, 200.63Mbit/s for the 128-entry cache, and 200.65Mbit/s for the 256-entry cache.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 108

Figure 6.43: throughput obtained using a 64-entry cache and an AES hardware running at 60MHz

Figure 6.44: throughput obtained using a 128-entry cache and an AES hardware running at 60MHz

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 109

Figure 6.45: throughput obtained using a 256-entry cache and an AES hardware running at 60MHz

6.5.4.4. Running the AES hardware at 70MHz

As explained in section 6.5.1.2, considering a 70MHz clock for the AES hardware, the

ENC_TIME and ENC_SETUP parameters have to be respectively set to 3.14*10-7 and to

2.42*10-7.

The throughput obtained for a 64-entry cache and for a 128-entry cache is respectively

reported in Figure 6.46 and in Figure 6.47. Here it can be seen that running the AES

hardware at 70MHz, a 64-entry cache can be successfully used too. The numerical data

for the throughput obtained with that cache dimension is 200.69Mbit/s.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 110

Figure 6.46: throughput obtained using a 64-entry cache and an AES hardware running at 70MHz

Figure 6.47: throughput obtained using a 128-entry cache and an AES hardware running at 70MHz

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 111

6.5.4.5. Conclusions about the results obtained with this simulation

From the results obtained in the previous sections, we can point out that the cache

dimension we should use to obtain the required performance, strictly depends on the

clock rate used for the AES hardware.

The AES clock and the cache dimension should be chosen also taking into account that

a performance margin is needed for safely guarantee the results with respect to all the

approximations we introduced writing the simulation.

Using a 64-entry cache with a 70MHz AES hardware seems not to be a good idea, both

for the higher clock rate to be used and because using a 64-entry cache can left less

margin for the SA creation process (as explained in section 6.4.7).

The better solutions seem to be two: the one that is composed by a 128-entry cache

coupled with a 60MHz AES hardware or the one composed by a 256-entry cache

coupled with a 60MHz AES hardware. Since the results obtained with those two cache

dimensions are almost the same and that the former solution needs half the memory

needed by the latter solution, the cache dimension to be chosen should be the first one.

6.5.4.6. Using a 30 min. timeout on the unused SAs

Using a timeout on the unused SAs as explained in section 6.4.4.2, does not change the

results about the throughput presented above. As a matter of fact, that timeout is not

useful here, because the simulation last for less than 12s. The timeout would have to be

scaled by the same factor of the timestamps, but this would mean to set a timeout of

only 2.9s, that would not have any meaning in a real system. As we saw in the previous

sections, introducing that kind of SA closure policy does not have bad effects on cache

misses (as a matter of fact it lower the number of avoidable misses), so it could not have

bad effects on throughput here.

No results considering the TCP FIN packets are shown here, considering that solution

not good from the point of view of SA reuse.

6.5.4.7. Considering some cache position reserved for SA creation

As done in section 6.4.7, we consider here the cache dimension slightly diminished for

taking into account the cache positions that in a real system would be used for creating

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 112

the SAs. The throughput obtained with a 108-entry cache (simulating a 128-entry cache

with 20 busy cache positions) and a 60MHz AES hardware is shown in Figure 6.48. As

we can see from that figure, the system is still able to support the desired throughput.

Figure 6.48: throughput obtained using a 108-entry cache and an AES hardware running at 60MHz

6.5.5. Considering the behavior of IKE Phase 2 in quick mode

In the previously shown simulations, we did not care about the fact that, when IKE

Phase 2 - quick mode is applied, two SAs are created at the same time (see sections

3.4.2 and 6.4.8).

In this subsection we will show the results obtained running a slightly modified version

of the simulation program. In that version of the simulation program, when a new SA is

opened, another SA between the same two IP addresses but in the opposite direction is

automatically opened too.

Also in this case, no information about the time needed for the creation of the security

associations are introduced.

The results obtained here are pretty much the same as the ones shown before. A

graphical representation of the results obtained considering a 60MHz AES hardware, is

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 113

shown in Figure 6.49, Figure 6.50, and in Figure 6.51. In those figures a 128-entry

cache, a 256-entry cache and a 108-entry cache are respectively considered. The

throughput obtained for a 128-entry cache is 200.63Mbit/s. With a 256-entry cache we

can obtain a throughput of 200.65Mbit/s.

Figure 6.49: throughput obtained using a 128-entry cache and an AES hardware running at 60MHz – SA
creation as in IKE Phase 2 Quick Mode

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 114

Figure 6.50: throughput obtained using a 256-entry cache and an AES hardware running at 60MHz – SA
creation as in IKE Phase 2 Quick Mode

Figure 6.51: throughput obtained using a 108-entry cache and an AES hardware running at 60MHz – SA
creation as in IKE Phase 2 Quick Mode

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 115

6.6. Adding the delays due to the SA creation phase

In this section we analyze the possibility to add some information about the delay

introduced by the SA creation phase (IKE phase 1 and 2) to the simulation. The fact that

the data we have do not contain any information about that phase (see section 6.2),

makes the work done here to be less accurate than in the previous sections.

Considerations about the way the phase 1 of IKE is performed, lead us to consider the

IKE phase 2 only. This means we are supposing that the IKE phase 1 has already been

performed so that the ISAKMP SAs have already been created. Unfortunately, not

having real data about the creation of the ISAKMP SAs, introducing guesses on the

phase 1 would have introduced too much uncertainty without giving any (useful)

additional information about cache usage. The ISAKMP SAs have a maximum lifetime

of 24 hours (see [NIST-2]), therefore supposing the SAs to have already been created

can be a not so bad choice. IKE phase 1 is based on public-key cryptography, a

component of our system that does not use cache. In IKE phase 2 public-key

cryptography is still used for Diffie-Hellman exchanges, but the cache is also used to

store the “half generated” keys and the ISAKMP SAs information. With “half-generated

key” we mean the Diffie-Hellman secret that must be stored while waiting for the other

peer’s Diffie-Hellman payload.

In the following subsection a description of the delays that must be considered building

this simulation is given.

6.6.1. Description of the delays introduced by the IPSec SA creation phase

6.6.1.1. Diffie-Hellman key generation delays

The delay introduced by this operation can be considered to be around 400µs for each of

the two needed phases (the Diffie-Hellman secret generation and the key completion

operations). The time needed for the ECC curve computation (assumed to be around

100µs) must be also added to that delay. In [CA-PO], better results are given for

hardware-software implementations of the key generation algorithm, but only

considering 155-bit-wide ECC keys. Here we consider a 600-bit-wide ECC key.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 116

Therefore we consider the time needed for the key generation to be the longest time

taken by the software implementation of the algorithm running with a 155-bit ECC key

(400µs).

The key computation delay described above, should be considered twice for each SA

creation process, being that for each IKE phase 2 quick mode process, a pair of

independent SAs is created and that those two SAs have keys derived from different key

material. The ECC curve computation must be considered only once for each of the two

phases, since the two key generations previously discussed are performed on the same

curve and one after the other.

6.6.1.2. Transferring the public-key material on the bus

Each time the command to generate a key is invoked, we suppose that the ECC

parameters have to be set. Considering a 600-bit ECC key, we need to transfer 526

bytes on the data channel between the host and the crypto-processor (see Table 4.10).

Basing on what stated in section 6.5.1.1, to transfer 526 bytes we need

1.515*10-8*(1+1+132)=2*10-6s

When the key-completion command is invoked, the delay introduced by transferring the

key material received by the other peer should also be considered.

6.6.1.3. The network delays

The delays that need to be considered in this phase are composed not only by the ones

introduced by the crypto-system (key generation, cache misses, …), but also by the

network delays. As a matter of fact the SA creation phase is based on some exchanges

between the two peers who are negotiating a pair of SAs as described in section 1.4.3.

The minimum number of ask/reply exchanges that must be considered here are two (a

message from the initiator to the responder, a reply, and another message from the

initiator to the responder), since we are considering only the phase 2 of IKE. It can be

easily noted that the delays introduced by the network are pretty much not predictable

and are the ones that have the main impact on the SA creation time (they are higher than

the ones introduced by the crypto-system, often by some order of magnitude).

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 117

As first step we analyzed the data file we have, to obtain some information about the

time necessary for an ask/reply exchange between each of the peers. To do that we used

the C program reported in Appendix D. In Figure 6.52 is reported a graph that displays

the average reply time between each peer, while in Figure 6.53 the same graph is

reported with the lowest part of the ordinates axe magnified.

Figure 6.52: average reply time for each pair of peers

Using the same C program we was also able to obtain the minimum reply time between

each of the peers as reported in Figure 6.54, and the maximum reply time between each

of the peers as reported in Figure 6.55.

That data was obtained considering the time that intercourses between a data

transmission from a source to a destination an the corresponding reply (a datagram

going from the one that was previously the destination to the ones that was previously

the source). When two datagrams going from a source to a destination without a reply

between them are found, the oldest datagram’s timestamp is thrown away. We have to

note that there are 101 peers (over around 1,800) which do not have any time statistic,

this is due to the fact that the communication pattern we considered never occurs for

that peers.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 118

Figure 6.53: average reply time between each pair of peers with the part of the ordinate axe between 0
and 3 magnified

The average reply time obtained is 2.2s.

These network delays was obtained without scaling the timestamps with any factor.

From our stand point, scaling the network delays is not correct, and using the values as

they are is not correct too. More than that, deciding what kind of values to use can be

hard. As a matter of fact using the average values can be a good choice, but being this a

worst case estimation, we should use the maximum ones. Any choice we did would led

us to introduce enormous delays having an uncertainty that is often higher than the

delays introduced by the whole crypto-system. We are talking about delays of some

seconds (around 4s in average) in a system that can process 1.8 million of datagrams in

les than 12s! We have also to remember that we are working on a model, and adding

that delays would change the system behavior, leading us far from the indication given

by the real timestamps we have in the data file.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 119

Figure 6.54: minimum reply time between each pair of peers

Figure 6.55: maximum reply time between each pair of peers

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 120

6.6.2. Conclusions about the SA creation delays

As stated before, the main delays that must be introduced for considering the SA

creation phase, strictly depend on unpredictable events, such as the network

communications. Moreover, thinking about how the simulation should work, it can be

pointed out that the datagrams would need to be reordered to keep the simulated system

running while the SAs are created. Not reordering the packets would mean that, for each

SA-pair creation, the system would stop for around 4s waiting for the key generation

process to be completed. In both cases we would consider a system behavior far from

reality. As a matter of fact in the first case the datagram reordering would dramatically

increase the temporal locality of the packets, lowering the number of avoidable cache

misses; in the latter case we would have a simulation reproducing a system stalling at

each SA-pair creation.

From our stand point the only way for obtaining a reasonable simulation including the

SA creation phase, would be to take some data from a real IPSec system. Using such

data, would also allow to study the effects of a SA closure policy on the performance of

the system. As a matter of fact, when a SA is closed and needs to be reopened, the SA

creation mechanism (IKE phase 2) needs to be used.

The previous considerations lead us to decide not to write any further simulation based

on the available data.

6.7. Technical details related to the simulations

The simulation programs was compiled using the GNU gcc compiler (2.96 modified by

Red Hat) under Red Hat Linux 7.2 (with a 2.4.18 kernel). The only gcc option used was

“-O3” that makes the compiler perform the best possible code optimization for speed it

can do.

The PC used to run the simulations is based on an AMD Athlon XP1700+ (1.46GHz)

processor. Each simulation run described in section 6.4 takes around 4 seconds; the ones

described in section 6.5 take around 7 seconds each.

All the graphs shown in this chapter were obtained using the gnuplot tool.

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 121

6.8. Choiching the optimal cache dimension

From the results shown in the previous sections, we can state that the desired throughput

can be obtained using a 128-entry or a 256-entry cache. Obviously, those performance

are provided only using the right clock rate for the AES hardware. Although some

indications about the values to be used for that parameter are shown here, the study of

its optimal value is beyond the scope of this document.

Also changing the other system’s parameters may impact on the optimal cache

dimension to be chosen. For example, considering a CRC hardware two order of

magnitude slower than the considered one would lead us point out that also the 256-

entry cache is not enough to support the desired throughput.

For choosing the right cache dimension, all the system parameters have to be

considered, and a performance margin should be taken, considering all the

approximations made writing the simulations. Using the parameters shown in the

previous sections, the optimal cache dimension seems to be of 128 entries. That solution

does not guarantee the best reuse of the cache entries before discard, but it seems not to

provide so different performance from the 256-entry cache, while it allows to save of

16kb of memory on the crypto-processor.

6.9. Results validation

With “validation” we mean the use of a different set of data to verify the obtained

results, as normally done in the model identification field. As stated before we have

available another (shorter) set of data taken from the same system in a different daytime

([ITA-2]). Using that set of data, the results obtained are pretty much the same as the

ones obtained with the other data file. In Figure 6.56 is reported (for example) the

throughput obtained with a 128-entry cache and a 60MHz AES hardware. In that case

the required average throughput is of 210.9Mbit/s, as the obtained one. The throughput

that can be reached here is higher than in the previous cases because the considered

traffic has a slightly different shape. Less but bigger datagrams per second are here

Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 122

processed. With this kind of traffic the AES hardware is able to work in better

conditions allowing a higher throughput.

A further validation of the conducted studies should be done using sets of data taken

from other systems.

Figure 6.56: throughput obtained using a 128-entry cache and an AES hardware running at 60MHz with
a different set of data

Chapter 7 Conclusions 123

7. Conclusions

Defining the security policy and the smart card software interface is a good starting

point for future development of the project. Furthermore, defining the smart card

software interface lead us to develop a quite deep understanding of the IKE and IPSec

protocols.

Studying the data taken from a real system, we were also able to understand the

dimension of the memory needed in a high-performance crypto-processor to support

IPSec in a high throughput system. Some data about the SA closure policy to be used

were also obtained.

Chapter 8 Possible future improvements of the system 124

8. Possible future improvements of the system

8.1. Testing and verification of the software inter face

The smart card software interface described here need to be tested in a real IPSec

implementation, mainly to verify that the provided commands allow the system to work

in the right way. This can be done only when both a complete software model of the

smart card and an IPSec implementation based on that model will be ready.

That test would also allow to discover possible interoperability problems with other

IPSec implementations, for example conducting the on-line test provided on the NIST

website ([NIST-1]).

8.2. Further studies about the SA cache

Further studies about the crypto-processor’s SA-database can be conducted using data

taken from real IPSec systems. In that way we would be able to see the effects of the SA

creation phase on the system’s performance and on the cache usage.

More precise data about cache misses can be also obtained running the same simulation

program we used on data taken from a real 200Mbit/s system. This would allow to run

the simulation without scaling the timestamps, so that less approximations were

introduced in the results.

Further studies should also be done on the behavior of the SA cache with respect to the

SA creation process.

 Bibliography 125

Bibl iography

[BOR] Michael S. Borella – 3Com Corp., Methods and Protocols for Secure

Key Negotiation Using IKE, IEEE Network, July/August 2000

[CA-PO] F. Cassoli, F. Polloni, Public-key Exchange Implementation, ALaRI

Master technical report, July 2001

[COM-1] Security & Privacy, a supplement to the April 2002 issue of IEEE

Computer

[COM-2] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W.

Smith, S. Weingart, Building the IBM 4758 Secure Coprocessor, IEEE

Computer, October 2001, pp. 57-66

[DEIT] H.M. Deitel, P.J. Deitel, C++ How to program, Prentice Hall, 1994

[DRAFT-1] S. Blake-Wilson, Y. Poeleuev, M. Salte, Additional ECC Groups for

IKE, www.ietf.org, March 2001 – expires September 2001

[DRAFT-2] S. Frankel, S. Kelly, R. Glenn – The AES Cipher Algorithm and Its Use

With IPsec, www.ietf.org, November 2000 – expires May 2001

[DRAFT-3] S. Frankel, S. Kelly, R. Glenn – The AES Cipher Algorithm and Its Use

With IPsec, www.ietf.org, November 2001 – expires May 2002

[DRAFT-4] National Institute of Standards and Technology, Secure Hash Standard,

www.nist.gov, 2001

[FSWAN] J. Gilmore, H. Spencer, R. Guy Briggs, H. Redelmeier, S. Harris, C.

Schmeing, H. Daniel – Linux FreeS/Wan;

www.xs4all.nl/~freeswan/download.html, 2000

[FUG] Alfonso Fuggetta, WebBook, www.cefriel.it/~alfonso, 2001

[IEEE-1] R. Perlman, C. Kaufman – Key exchange in IPSec: Analysis of IKE,

IEEE Internet Computing, Nov-Dec 2000

[IEEE-2] A.D. Keromytis, J. Ioannidis, J. M. Smith – Implementing IPSec, IEEE,

1997

 Bibliography 126

[ITA-1] Internet Traffic Archive, ita.ee.lbl.gov/html/contrib/LBL-TCP-3.html,

2002

[ITA-2] Internet Traffic Archive, ita.ee.lbl.gov/html/contrib/LBL-PKT.html,

2002

[MAC-MAR] M. Macchetti, S. Marchesin, AES algorithm analysis, implementation

an profiling, ALaRI Master technical report, July 2001

[MOV] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of applied

cryptography, CRC press, 1996

[NIST-1] R. Glenn, S. Frankel, D. Montgomery – IPSec-WIT: the NIST IPSec

Web-based Interoperability Test System, www.nist.gov

[NIST-2] NIST PlutoPlus, An IKE Reference Implementation for Linux,

www.antd.nist.gov/plutoplus/

[P-H] D.A. Patterson, J.L. Hennessy, Struttura e progetto dei calcolatori,

Zanichelli, 1995

[POM] O. Pomerants, Linux kernel module programming guide, www.doc-

linux.co.uk/LDP/LDP/lkmpg, 1999

[RFC-2401] S. Kent, Security architecture for the internet protocol,

www.ietf.org/rfc/rfc2401.txt, November 1998

[RFC-2402] R. Atkinsons, IP Authentication Header, www.ietf.org/rfc/rfc2402.txt,

November 1998

[RFC-2406] R. Atkinsons, IP Encapsulating Security Payload,

www.ietf.org/rfc/rfc2406.txt , November 1998

[RFC-2407] D. Piper, The internet IP security domain of interpretation for ISAKMP,

November 1998; www.ietf.org/rfc/rfc2407.txt

[RFC-2408] D. Maughan, M. Schertler et al., Internet security association and key

management protocol (ISAKMP), www.ietf.org/rfc/rfc2408.txt,

November 1998

[RFC-2409] D. Carrel, The internet key exchange (IKE),

www.ietf.org/rfc/rfc2409.txt, November 1998

 Bibliography 127

[RFC-2451] R. Pereira, The ESP CBC-Mode Cipher Algorithms,

www.ietf.org/rfc/rfc2451.txt, November 1998

[RHS] R. Schroeppel, H. Orman, S. O’Malley, Fast key exchange with elliptic

curve systems, citeseer.nj.nec.com/schroeppel95fast.html, 1995

[TAN] Andrew S. Tanenbaum, I moderni sistemi operativi, Prentice Hall

International, 1994

[VAS] Alavoor Vasudevan, C++ programming HOW-TO,

www.linuxdoc.org/HOWTO/C++Programming-HOWTO.html, 2001

Appendix A The smart card interface code 128

Appendix A. The smart card interface code

A.1. sC_driver.h

//sC_driver.h
// header definition of the smart card software int erface for IPSec

//made by Alberto Ferrante
//May-June 2001

#include<limits.h>

#ifndef __SC_DRIVER__
#define __SC_DRIVER__

//maximum number of slots available into the S/C
#define MAX_SC_SLOTS 16
//maximum number of SA available = MAX_SC_SLOTS*40
#define MAX_SA MAX_SC_SLOTS*40
//length of the S/C command queue
#define MAX_SC_QUEUE 10

//smart card command code definitions (8 bits for e ach command)
#define LOGIN 1
#define REFRESH_SESSION_KEY 2
#define RESET_SC 3
#define TEST_SC 4
#define READ_SC_STATUS 5
#define SET_SA_STATUS 6
#define GET_SA_PARAMETERS 7
#define GEN_DH 8
#define COMPLETE_DH 9
#define DELETE_SA 10
#define SYMM_DECRYPT 11
#define SYMM_ENCRYPT 12
#define SET_ECC_INFO 13
#define GET_ECC_INFO 14
#define GET_PUB_KEY 15
#define PUBLIC_ENCRYPT 16
#define PUBLIC_DECRYPT 17
#define HASH 18
#define GEN_SYMM_SIGN 19
#define GEN_ECDSA_SIGNATURE 20
#define VERIFY_ECDSA_SIGNATURE 21

//driver command code definitions (8 bits for each command)
#define SC_ERROR 22
#define LOGIN_RESULTS 23
#define TEST_RESULTS 24
#define SC_STATUS 25
#define SA_PARAMETERS 26
#define RANDOM_DH 27
#define SYMM_DECRYPTED_P 28
#define SYMM_ENCRYPTED_P 29
#define ECC_INFO 30
#define ECC_KEY 31
#define ECC_ENCRYPTED 32
#define ECC_DECRYPTED 33
#define HASH_RESULTS 34
#define SYMM_SIGN 35
#define ECDSA_SIGNATURE 36
#define ECDSA_CHECK_RES 37
#define CONFIRMATION 38

//error codes
#define GENERIC 1
#define BAD_SA_INDEX 2
#define WRONG_AES_PACKET 4
#define TAMPERED_SA_INFORMATION 5

Appendix A The smart card interface code 129

#define WRONG_DH_NUMBER 6
#define AES_PARAMETERS_NOT_SET 7
#define WRONG_ECC_INFO 8
#define ECC_INFO_NOT_SET 9
#define WRONG_PRD_PARAMETER 10
#define WRONG_SYMM_SIGN_PARAM 11
#define WRONG_SIGNATURE_PARAM 12
#define LOGIN_ALREADY_DONE 13
#define CANNOT_REFRESH_S_KEY 14

//hashfcn parameter
#define HMACMD5 1
#define HMACSH1 2

//methods error codes
#define OK 0
#define GEN_ERROR -1
#define TOO_OPENED -2
#define SC_QUE_FULL -3

struct Info{
 unsigned int sa; //sa number into the SADB
 unsigned int slot; //sc slot in which the SA has b een allocated, if any
 unsigned int* saved; //space for saving info for s wapping
};
typedef Info saInfo;

struct Slot{
 saInfo* posArray;
 unsigned int usage;
};
typedef Slot scSlot;

class sC_driver {
 public:
 sC_driver(iPSec ipsec, SmartCard SC); //construct or
 ~sC_driver(); //destructor

 int ip_rcv(unsigned int length, unsigned int* dat a);
 int login(unsigned int pin);
 int reset_sc();
 int test_sc(unsigned int puk);
 int genDH(unsigned int sa, unsigned int key_dim, unsigned int mode,

unsigned int rounds);
 int compDH(unsigned int sa, unsigned int key_dim, unsigned int* dh);
 int deleteSA(unsigned int number);
 int symmDecrypt(unsigned int sa, unsigned int len gth, unsigned int* data,

unsigned int hashf, unsigned int sigf, unsigned int ivf);
 int symmEncrypt(unsigned int sa, unsigned int len gth, unsigned int* data,

unsigned int hashf, unsigned int sigf, unsigned int ivf);
 int setECCInfo(unsigned int n, unsigned int* A, u nsigned int* B,

unsigned int* x, unsigned int* y);
 //overloaded method: version without the key pa rameter
 int setECCInfo(unsigned int n, unsigned int* A, u nsigned int* B, unsigned int* x,
 unsigned int* y, unsigned int* key);//version w ith the key parameter
 int getPublicKey();
 int pubEncrypt(unsigned int length, unsigned int* data);
 int pubDecrypt(unsigned int length, unsigned int* data);
 int hash(unsigned int length1, unsigned int lengt h2, unsigned int* data1,

unsigned int* data2, unsigned int hashfcn);
 int genSymmSign(unsigned int sa, unsigned int len gth, unsigned int* data1,

unsigned int* data2, unsigned int hashfcn);
 int genECDSASign(unsigned int length, unsigned in t* data);
 int verifyECDSASig(unsigned int length, unsigned int* data);

 private:
 SmartCard SC;
 iPSec ipsec; /* the ipsec process that inizializ ed the driver;
 if there are more than one IPSec instances,
 it will be necessary to store it into the saIn fo
 structure so that each opened SA has an associ ated
 IPSec instance. In that case, the genDH method
 should also have the pointer to the IPSEc obje ct
 as parameter and the ip_rcv method should sear ch

Appendix A The smart card interface code 130

 into the saArray array the object to use.
 */

 scSlot sc[MAX_SC_SLOTS];
 saInfo saArray[MAX_SA];

 unsigned int opened_dev;
 static unsigned int istantiated=0;

 unsigned int freeSlots;
 unsigned int freeSa;
 unsigned int freeQue;

 unsigned int saved_n;
 unsigned int* saved_A;
 unsigned int* saved_B;
 unsigned int* saved_x;
 unsigned int* saved_y;
 unsigned int* saved_key;

 int firstFreeSlot();
 saInfo* firstFreeSa();
 void updateUsage();
 unsigned int findLeastUsed();
 unsigned int swap();
 saInfo* findSa(unsigned int sa);
 int incOpened();
 void decOpened();
};

#endif //__SC_DRIVER__

A.2. sC_driver.cpp

//sC_driver.cpp
// smart card software interface for IPSec

//made by Alberto Ferrante
//May-June 2001

#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include "sC_Driver.h"

#ifndef NDEBUG
#include <assert.h>
#endif;

sC_driver::sC_driver(iPSec ipsec, SmartCard SC){
//constructor
//pre: ipsec!=NULL && SC!=NULL && istantiated == 0
//post: this.ipsec!=NULL && this.SC!=NULL && istant iated == 1

 #ifndef NDEBUG
 assert(ipsec!=NULL);
 assert(SC!=NULL);
 assert(istantiated ==0);
 #endif;

 unsigned int i=0;

 if (istantiated == 0){
 istantiated++;
 opened_dev=0;
 freeSlots=MAX_SC_SLOTS;
 freeSa=MAX_SA;
 freeQue=MAX_SC_QUEUE;

 this.ipsec=ipsec;
 this.SC=SC;
 for (i=0; i<MAX_SA; i++){

Appendix A The smart card interface code 131

 saArray[i].scSlot=MAX_SC_SLOTS;
 saArray[i].sa=0;
 }

 for (i=0; i<MAX_SC_SLOTS; i++){
 sa[i].posArray=NULL;
 sa[i].usage=0;
 }

 current=0;
 }

 #ifndef NDEBUG
 assert(this.ipsec!=NULL);
 assert(this.SC!=NULL);
 assert(istantiated == 1);
 #endif;
}

sC_driver::~sC_driver(){
//destructor
//pre: none
//post: none
}

int sC_driver::ip_rcv(unsigned int length, unsigned int* data){
//method for receiving data from the S/C
//pre: length>0 && data!=NULL
//post: none

 #ifndef NDEBUG
 assert(length>0);
 assert(data!=NULL);
 #endif;

 unsigned int command=data[0]>>24;

 switch(command){
 case SC_ERROR:
 ipsec.error(data[0]&0x000000FF);
 break;

 case LOGIN_RESULTS:

ipsec.loginResults(data[0]&0x00000700>>8, data[0]&0 x000000F0>>4,
 data[0]&0x00000001);

 //counter, status code, result
 break;

 case TEST_RESULTS:
 //still to be defined!!!
 break;

 case SC_STATUS:
 //unused so far
 break;

 case SA_PARAMETERS:
 //unused so far
 break;

 case RANDOM_DH:
 ipsec.randomDH(data[0]&0x000000FF, data+1); //SA index, data
 break;

 case SYMM_DECRYPTED_P:
 ipsec.symmDecrypted(data[0]&0x000000FF, data+1); //SA index, data
 break;

 case SYMM_ENCRYPTED_P:
 ipsec.symmEncrypted(data[0]&0x000000FF, data+1); //SA index, data
 break;

 case ECC_INFO:
 //unused so far
 break;

Appendix A The smart card interface code 132

 case ECC_KEY:
 ipsec.ECCKey(data[0]&0x000000FF, (data[0]&0x00FF FF00)>>8, data+1);
 //length, key length (bits), data
 break;

 case ECC_ENCRYPTED:
 ipsec.ECCEncrypted(data[0]&0x000000FF, data+1); //length, data
 break;

 case ECC_DECRYPTED:
 ipsec.ECCDecrypted(data[0]&0x000000FF, data+1); //length, data
 break;

 case HASH_RESULTS:
 ipsec.hashResults(data[0]&0x000000FF, data+1); / /length, data
 break;

 case SYMM_SIGN:
 ipsec.symmSign(data[0]&0x000000FF, data+1); //le ngth, data
 break;

 case ECDSA_SIGNATURE:
 ipsec.ECDSASignature(data[0]&0x000000FF, data+1) ; //length, data
 break;

 case ECDSA_CHECK_RES:
 ipsec.ECDSACheckRes(data[0]&0x000000FF, data+1); //length, data
 break;

 case CONFIRMATION:
 ipsec.confirmation(data[0]&0x000000FF);
 break;

 default:
 break;
 }
 return OK;
}

int sC_driver::login(unsigned int pin){
//method for calling the LOGIN command
//pre: none
//post: none

 if(incOpened()==1){
 unsigned int code=0;

 code=(((unsigned int)LOGIN)<<24)|pin;
 if (freeQue==0) return SC_QUE_FULL; else freeQue- -;
 SC.sc_rcv(1, &code);
 freeQue++;

 decOpened();
 return OK;
 }else return TOO_OPENED;
}

int sC_driver::reset_sc(){
//method for calling the RESET command
//pre: none
//post: none

 if(incOpened()==1){
 unsigned int code=0;

 code=(((unsigned int)RESET_SC)<<24);
 if (freeQue==0) return SC_QUE_FULL; else freeQue- -;
 SC.sc_rcv(1, &code);

 freeQue++;

 decOpened();
 return OK;
 }else return TOO_OPENED;
}

Appendix A The smart card interface code 133

int sC_driver::test_sc(unsigned int puk){
//method for calling the TEST_SC command
//pre: none
//post: none

 if(incOpened()==1){
 unsigned int code=0;

 code=(((unsigned int)TEST_SC)<<24)|puk;
 if (freeQue==0) return SC_QUE_FULL; else freeQue- -;
 SC.sc_rcv(1, &code);
 freeQue++;

 decOpened();
 return OK;
 }else return TOO_OPENED;
}

int sC_driver::genDH(unsigned int sa, unsigned int key_dim, unsigned int mode, unsigned int rounds){
//method for calling the GENDH command
//pre: sa!=0 && (key_dim==128||key_dim==192||key_di m==256) && rounds <15
//post: none

 #ifndef NDEBUG
 assert(sa!=0);
 assert(key_dim==128||key_dim==192||key_dim==256);

assert(rounds<15);
 #endif;

 if(incOpened()==1){
 int slotnum;
 unsigned int code;
 unsigned int key=0;

switch(key_dim){ //the key dimension is transformed in the corresponding code
 case 196:
 key=1;

 break;
 case 256:
 key=2;
 break;

 default:
 key=0;
 break;

 }

 if (freeSa>0){
 freeSa--;
 if(freeSlots>0){
 freeSlots--;
 slotnum=firstFreeSlot();
 }else{
 if (freeQue==0) return SC_QUE_FULL; else freeQu e--;

//verifies if it is possible to perform the swap
 slotnum=swap();
 freeQue++;
 }
 sc[slotnum].posArray=firstFreeSa();
 (sc[slotnum].posArray)->slot=slotnum;
 updateUsage();
 sc[slotnum].usage=UINT_MAX;
 code=(((unsigned int)GEN_DH)<<24)|(mode<<20)|(ro unds<<16)

|(key<<8)|(unsigned int)slotnum;
 if (freeQue==0) return SC_QUE_FULL; else freeQue --;
 SC.sc_rcv(1, &code);
 freeQue++;

 decOpened();
 return OK;
 }

Appendix A The smart card interface code 134

 else{
 decOpened();
 return GEN_ERROR;
 }
 }else return TOO_OPENED;
}

int sC_driver::compDH(unsigned int sa, unsigned int key_dim, unsigned int* dh){
//method for calling the COMPLETE_DH command
//pre: sa!=0 && (key_dim==128||key_dim==192||key_di m==256) & dh!=NULL
//post: none

 #ifndef NDEBUG
 assert(sa!=0);

assert(key_dim==128||key_dim==192||key_dim==256);
 assert(dh!=NULL);
 #endif;

 if(incOpened()==1){
 saInfo* pos=NULL;
 unsigned int slotnum=0;
 unsigned int length=(unsigned int)ceil(((float)ke y_dim)/32);
 unsigned int* payload=new(unsigned int[length+1]) ;
 unsigned int i=0;

unsigned int key=0;

switch(key_dim){ //the key dimension is transformed in the corresponding code
 case 196:
 key=1;

 break;
 case 256:
 key=2;
 break;

 default:
 key=0;
 break;

 }

 if((pos=findSa(sa))!=NULL){
 if((slotnum=pos->slot)==MAX_SC_SLOTS){

//the sa is not in the S/C and there is a free slot
 if(freeSlots>0){
 freeSlots--;
 slotnum=firstFreeSlot();
 }
 else{ //the sa is not in the S/C performs a swa p and there are

//no free slots
 if(freeQue==0) return SC_QUE_FULL; else freeQu e--;

//verify if it is possible to perform the swap
 slotnum=swap();
 freeQue++;
 }
 sc[slotnum].posArray=pos;
 pos->slot=slotnum;
 }
 updateUsage();
 sc[slotnum].usage=UINT_MAX;

 //prepares the data to send to the S/C
 payload[0]=(((unsigned int)COMPLETE_DH)<<24)|(ke y<<8)|(unsigned int)slotnum;
 for(i=0;i<length;i++) payload[i+1]=dh[i];

 if(freeQue==0) return SC_QUE_FULL; else freeQue- -;
 SC.sc_rcv(length+1, payload);
 freeQue++;

 decOpened();
 return OK; //operation correctly executed
 }
 else {
 decOpened();
 return GEN_ERROR;
 }
 }else return TOO_OPENED;
}

Appendix A The smart card interface code 135

int sC_driver::deleteSA(unsigned int sa){
//method for calling the DELETESA command
//pre: sa!=0
//post: none

 #ifndef NDEBUG
 assert(sa!=0);
 #endif;

 if(incOpened()==1){
 saInfo* pos=NULL;
 unsigned int code=0;

 if((pos=findSa(sa))!=NULL){
 if(pos->slot<MAX_SC_SLOTS){
 code=(((unsigned int)DELETE_SA)<<24)|(unsigned int)pos->slot;
 if (freeQue==0) return SC_QUE_FULL; else freeQu e--;;
 SC.sc_rcv(1, &code);
 freeQue++;

 sc[pos->slot].usage=0;
 freeSlots++;
 }
 pos->slot=MAX_SC_SLOTS;
 pos->sa=0;
 delete(pos->saved);
 freeSa++;
 }
 return OK;
 }else return TOO_OPENED;
}

int sC_driver::symmDecrypt(unsigned int sa, unsigne d int length, unsigned int* data, unsigned int
hashf,
 unsigned int sigf, unsigned int ivf){
//method for calling the SYMMDECRYPT command
//pre: sa!=0 && length>0 && data!=NULL
//post: none

 #ifndef NDEBUG
 assert(sa!=0);
 assert(length>0);
 assert(data!=NULL);
 #endif;

 if(incOpened()==1){
 saInfo* pos=NULL;
 unsigned int slotnum=0;
 unsigned int* payload=new(unsigned int[length+2]) ;
 unsigned int i=0;

 if((pos=findSa(sa))!=NULL){
 if((slotnum=pos->slot)==MAX_SC_SLOTS){

//the sa is not in the S/C and there is a free slot
 if(freeSlots>0){
 freeSlots--;
 slotnum=firstFreeSlot();
 }
 else{ //the sa is not in the S/C performs a swa p and there are

//no free slots
 if(freeQue==0) return SC_QUE_FULL; else freeQu e--;

//verify if it is possible to perform the swap
 slotnum=swap();
 freeQue++;
 }
 sc[slotnum].posArray=pos;
 pos->slot=slotnum;
 }
 updateUsage();
 sc[slotnum].usage=UINT_MAX;

 //prepares the data to send to the S/C
 payload[0]=(((unsigned int)SYMM_DECRYPT)<<24)|(u nsigned int)slotnum;
 payload[1]=hashf<<24|sigf<<23|ivf<<16|length;
 for(i=0;i<length;i++) payload[i+2]=data[i];

Appendix A The smart card interface code 136

 if(freeQue==0) return SC_QUE_FULL; else freeQue- -;
 SC.sc_rcv(length+2, payload);
 freeQue++;

 decOpened();
 return OK; //operation correctly executed
 }
 else {
 decOpened();
 return GEN_ERROR;
 }
 }else return TOO_OPENED;

}

int sC_driver::symmEncrypt(unsigned int sa, unsigne d int length, unsigned int* data,

unsigned int hashf, unsigned int sigf, unsigned int ivf){
//method for calling the SYMMENCRYPT command
//pre: sa!=0 && length>0 && data!=NULL
//post: none

 #ifndef NDEBUG
 assert(sa!=0);
 assert(length>0);
 assert(data!=NULL);
 #endif;

 saInfo* pos=NULL;
 unsigned int slotnum=0;
 unsigned int* payload=new(unsigned int[length+2]);
 unsigned int i=0;

 if(incOpened()==1){
 if((pos=findSa(sa))!=NULL){
 if((slotnum=pos->slot)==MAX_SC_SLOTS){
 if(freeSlots>0){ //the sa is not in the S/C and there is a free slot
 freeSlots--;
 slotnum=firstFreeSlot();
 }
 else{ //the sa is not in the S/C performs a sw ap and there are

//no free slots
 if (freeQue==0) return SC_QUE_FULL; else freeQ ue--;

//verify if it is possible to perform the swap
 slotnum=swap();
 freeQue++;
 }
 sc[slotnum].posArray=pos;
 pos->slot=slotnum;
 }
 updateUsage();
 sc[slotnum].usage=UINT_MAX;

 //prepares the data to send to the S/C
 payload[0]=(((unsigned int)SYMM_ENCRYPT)<<24)|(u nsigned int)slotnum;
 payload[1]=hashf<<24|sigf<<23|ivf<<16|length;
 for(i=0;i<length;i++) payload[i+2]=data[i];

 if (freeQue==0) return SC_QUE_FULL; else freeQue --;
 SC.sc_rcv(length+2, payload);
 freeQue++;

 decOpened();
 return OK; //operation correctly executed
 }
 else{
 decOpened();
 return GEN_ERROR;
 }
 }else return TOO_OPENED;

}

Appendix A The smart card interface code 137

int sC_driver::setECCInfo(unsigned int n, unsigned int* A, unsigned int* B, unsigned int* x, unsigned
int* y){
 //n is the length in BITS
//method for calling the SETECCINFO command
//pre: n>0 && A!=NULL && B!=NULL && x !=NULL && y!= NULL
//post: none

 #ifndef NDEBUG
 assert(n>0);
 assert(A!=NULL);
 assert(B!=NULL);
 assert(x!=NULL);
 assert(y!=NULL);
 #endif;

 if(incOpened()==1){
 unsigned int curveLen=(unsigned int)ceil(((float) n)/32);
 unsigned int baseLen=(unsigned int)ceil(((float)n)*2/32);
 unsigned int payLen=curveLen*2+baseLen*2+1;
 unsigned int* payload=new(unsigned int[payLen]);
 unsigned int i=0;
 unsigned int notequals=0;

 //verifies if the data has already been loaded in to the S/C to avoid

//unuseful computations
 if (n==saved_n){
 for(i=0;i<curveLen && notequals==0;i++){
 if (A[i]!=saved_A[i]) notequals++;
 if (B[i]!=saved_B[i]) notequals++;
 }
 for(i=0;i<baseLen && notequals==0;i++){
 if (x[i]!=saved_x[i]) notequals++;
 if (y[i]!=saved_y[i]) notequals++;
 }
 }
 else notequals=1;

 if (notequals!=0){
 //prepares the arrays to store the ECC info for successive comparings
 delete(saved_A); saved_A=new(unsigned int[curveL en]);
 delete(saved_B); saved_B=new(unsigned int[curveL en]);
 delete(saved_x); saved_x=new(unsigned int[baseLe n]);
 delete(saved_y); saved_y=new(unsigned int[baseLe n]);
 delete(saved_key); saved_key=NULL;
 saved_n=n;

 //prepares the data to send to the S/C
 payload[0]=(((unsigned int)SET_ECC_INFO)<<24)|n< <8|payLen;
 for(i=0;i<curveLen;i++) payload[i+1]=saved_A[i]= A[i];
 for(i=0;i<curveLen;i++) payload[i+curveLen+1]=sa ved_B[i]=B[i];
 for(i=0;i<baseLen;i++) payload[i+curveLen*2+1]=s aved_x[i]=x[i];
 for(i=0;i<baseLen;i++) payload[i+curveLen*2+base Len+1]=saved_y[i]=y[i];
 if (freeQue==0) return SC_QUE_FULL; else freeQue --;
 SC.sc_rcv(payLen, payload);
 freeQue++;
 }
 decOpened();
 return OK;
 }else return TOO_OPENED;
}

int sC_driver::setECCInfo(unsigned int n, unsigned int* A, unsigned int* B,

unsigned int* x, unsigned int* y, unsigned int* key){
 //n is the length in BITS
//method for calling the SETECCINFO command passing also the public key of the other peer
//pre: n>0 && A!=NULL && B!=NULL && x !=NULL && y!= NULL && key!=NULL
//post: none

 if(incOpened()==1){
 unsigned int curveLen=(unsigned int)ceil(((float) n)/32);
 unsigned int baseLen=(unsigned int)ceil(((float)n)*2/32);
 unsigned int payLen=curveLen*3+baseLen*2+1;
 unsigned int* payload=new(unsigned int[payLen]);
 unsigned int i=0;
 unsigned int notequals=0;

Appendix A The smart card interface code 138

 //verifies if the data has already been loaded in to the S/C to avoid
//unuseful computations

 if (n==saved_n && saved_key!=NULL){
 for(i=0;i<curveLen && notequals==0;i++){
 if (A[i]!=saved_A[i]) notequals++;
 if (B[i]!=saved_B[i]) notequals++;
 if (key[i]!=saved_key[i]) notequals++;
 }
 for(i=0;i<baseLen && notequals==0;i++){
 if (x[i]!=saved_x[i]) notequals++;
 if (y[i]!=saved_y[i]) notequals++;
 }
 }
 else notequals=1;

 if (notequals!=0){
 //prepares the arrays to store the ECC info for successive comparings
 delete(saved_A); saved_A=new(unsigned int[curveL en]);
 delete(saved_B); saved_B=new(unsigned int[curveL en]);
 delete(saved_x); saved_x=new(unsigned int[baseLe n]);
 delete(saved_y); saved_y=new(unsigned int[baseLe n]);
 delete(saved_key); saved_key=new(unsigned int[cu rveLen]);
 saved_n=n;

 //prepares the data to send to the S/C
 payload[0]=(((unsigned int)SET_ECC_INFO)<<24)|n< <8|payLen;
 for(i=0;i<curveLen;i++) payload[i+1]=saved_A[i]= A[i];
 for(i=0;i<curveLen;i++) payload[i+curveLen+1]=sa ved_B[i]=B[i];
 for(i=0;i<baseLen;i++) payload[i+curveLen*2+1]=s aved_x[i]=x[i];
 for(i=0;i<baseLen;i++) payload[i+curveLen*2+base Len+1]=saved_y[i]=y[i];
 for(i=0;i<curveLen;i++) payload[i+curveLen*2+bas eLen*2+1]=saved_key[i]=key[i];
 if (freeQue==0) return SC_QUE_FULL; else freeQue --;
 SC.sc_rcv(payLen, payload);
 freeQue++;
 }
 decOpened();
 return OK;
 }else return TOO_OPENED;
}

int sC_driver::getPublicKey(){
//method for calling the TEST_SC command
//pre: none
//post: none

 if(incOpened()==1){
 unsigned int code=0;

 code=(((unsigned int)GET_PUB_KEY)<<24);
 if (freeQue==0) return SC_QUE_FULL; else freeQue- -;
 SC.sc_rcv(1, &code);
 freeQue++;
 decOpened();
 return OK;
 }else return TOO_OPENED;
}

int sC_driver::pubEncrypt(unsigned int length, unsi gned int* data){
//method for calling the PUBENCRYPT command
//pre: length>0 && data!=NULL
//post: none

 #ifndef NDEBUG
 assert(length>0);
 assert(data!=NULL);
 #endif;

 if(incOpened()==1){
 unsigned int* payload=new(unsigned int[length+1]) ;
 unsigned int i=0;

 payload[0]=(((unsigned int)PUBLIC_ENCRYPT)<<24)|l ength;
 for(i=0;i<length;i++) payload[i+1]=data[i];

Appendix A The smart card interface code 139

 if (freeQue==0) return SC_QUE_FULL; else freeQue- -;
 SC.sc_rcv(length+1, payload);
 freeQue++;
 decOpened();
 return OK;
 }else return TOO_OPENED;
}

int sC_driver::pubDecrypt(unsigned int length, unsi gned int* data){
//method for calling the PUBDECRYPT command
//pre: length>0 && data!=NULL
//post: none

 #ifndef NDEBUG
 assert(length>0);
 assert(data!=NULL);
 #endif;

 if(incOpened()==1){
 unsigned int* payload=new(unsigned int[length+1]) ;
 unsigned int i=0;

 payload[0]=(((unsigned int)PUBLIC_DECRYPT)<<24)|l ength;
 for(i=0;i<length;i++) payload[i+1]=data[i];

 if (freeQue==0) return SC_QUE_FULL; else freeQue- -;
 SC.sc_rcv(length+1, payload);
 freeQue++;
 decOpened();
 return OK;
 }else return TOO_OPENED;
}

int sC_driver::hash(unsigned int length1, unsigned int length2, unsigned int* data1,

unsigned int* data2, unsigned int hashfcn){
//method for calling the HASH command
//pre: length1>0 && length2>0 && data1!=NULL && dat a2!=NULL && (hashfcn==1 || hashfcn==2)
//post: none

 #ifndef NDEBUG
 assert(length1>0);
 assert(length2>0);
 assert(data1!=NULL);
 assert(data2!=NULL);
 assert(hashfcn==1 || hashfcn==2);
 #endif;

 if(incOpened()==1){
 unsigned int* payload=new(unsigned int[length1+le ngth2+1]);
 unsigned int i=0;

 payload[0]=(((unsigned int)HASH)<<24)|length1<<16 |length2<<8|hashfcn;
 for(i=0;i<length1;i++) payload[i+1]=data1[i];
 for(i=0;i<length2;i++) payload[i+length1+1]=data2 [i];

 if (freeQue==0) return SC_QUE_FULL; else freeQue- -;
 SC.sc_rcv(length1+length2+1, payload);
 freeQue++;
 decOpened();
 return OK;
 }else return TOO_OPENED;
}

int sC_driver::genSymmSign(unsigned int sa, unsigne d int length, unsigned int* data1,

unsigned int* data2, unsigned int hashfcn){
//method for calling the GETSYMMSIGN command
//pre: sa!=0 && length >0 & data1!=NULL && data2!=N ULL && (hashfcn==1 || hashfcn==2)
//post: none

 #ifndef NDEBUG
 assert(sa!=0);
 assert(length>0);

Appendix A The smart card interface code 140

 assert(data1!=NULL);
 assert(data2!=NULL);
 assert(hashfcn==1 || hashfcn==2);
 #endif;

 if(incOpened()==1){
 unsigned int* payload=new(unsigned int[length*2+1]);
 unsigned int i=0;

 payload[0]=(((unsigned int)GEN_SYMM_SIGN)<<24)|le ngth<<16|hashfcn<<8|sa;
 for(i=0;i<length;i++) payload[i+1]=data1[i];
 for(i=0;i<length;i++) payload[i+length+1]=data2[i];

 if (freeQue==0) return SC_QUE_FULL; else freeQue- -;
 SC.sc_rcv(length*2+1, payload);
 freeQue++;
 decOpened();
 return OK;
 }else return TOO_OPENED;
}

int sC_driver::genECDSASign(unsigned int length, un signed int* data){
//method for calling the GENECDSASIGN command
//pre: length>0 && data!=NULL
//post: none

 #ifndef NDEBUG
 assert(length>0);
 assert(data!=NULL);
 #endif;

 if(incOpened()==1){
 unsigned int* payload=new(unsigned int[length+1]) ;
 unsigned int i=0;

 payload[0]=(((unsigned int)GEN_ECDSA_SIGNATURE)<< 24)|length;
 for(i=0;i<length;i++) payload[i+1]=data[i];

 if (freeQue==0) return SC_QUE_FULL; else freeQue- -;
 SC.sc_rcv(length+1, payload);
 freeQue++;
 decOpened();
 return OK;
 }else return TOO_OPENED;
}

int sC_driver::verifyECDSASig(unsigned int length, unsigned int* data){
//method for calling the VERIFYECDSASIGN command
//pre: length>0 && data!=NULL
//post: none

 #ifndef NDEBUG
 assert(length>0);
 assert(data!=NULL);
 #endif;

 if(incOpened()==1){
 unsigned int* payload=new(unsigned int[length+1]) ;
 unsigned int i=0;

 payload[0]=(((unsigned int)VERIFY_ECDSA_SIGNATURE)<<24)|length;
 for(i=0;i<length;i++) payload[i+1]=data[i];

 if (freeQue==0) return SC_QUE_FULL; else freeQue- -;
 SC.sc_rcv(length+1, payload);
 freeQue++;
 decOpened();
 return OK;
 }else return TOO_OPENED;
}

Appendix A The smart card interface code 141

//*******************************private methods*** **********************************

int sC_driver::firstFreeSlot(){
//computes the first free mem slot into the S/C, if any
//pre: sc!=NULL
//post: slot<sc+MAX_SC_SLOTS || slot==NULL

 #ifndef NDEBUG
 assert(sc!=NULL);
 #endif;

 scSlot* slot=sc;
 int pos=0;

 while(pos<MAX_SC_SLOTS && slot->posArray!=0){
 slot++;
 pos++;
 }

 if (slot=sc+MAX_SC_SLOTS) pos=-1;

 #ifndef NDEBUG
 assert(pos<MAX_SC_SLOTS || pos==-1);
 #endif;

 return pos;
}

saInfo* sC_driver::firstFreeSa(){
//computes the first free empty saArray position, i f any
//pre: saArray!=NULL
//post: num<sc+MAX_SA || num==NULL

 #ifndef NDEBUG
 assert(saArray!=NULL);
 #endif;

 saInfo* num=saArray;

 while(num<(saArray+MAX_SA) && num->sa!=0) num++;

 if (num=saArray+MAX_SA) num=NULL;

 #ifndef NDEBUG
 assert(num<saArray+MAX_SA|| num==NULL);
 #endif;

 return num;
}

void sC_driver::updateUsage(){
//update the usage info for all the sa contained in S/C mem slots
//pre: none
//post: none

 scSlot* slot;

 for(slot=sc; slot<sc+MAX_SC_SLOTS;slot++) slot->us age--;
}

unsigned int sC_driver::findLeastUsed(){
//return the index of the least used sa
//pre: none
//post: pos<MAX_SC_SLOTS

 scSlot* slot=sc;
 unsigned int i=0,
 pos=0,
 u=UINT_MAX;

Appendix A The smart card interface code 142

 while(i<MAX_SC_SLOTS){
 if(slot->usage<u){
 pos=i;
 u=slot->usage;
 }
 if (u==0) break;
 i++; slot++;
 }

 #ifndef NDEBUG
 assert(pos<MAX_SC_SLOTS);
 #endif;

 return pos;
}

unsigned int sC_driver::swap(){
//perform the swap of an sa and return the index of the freed slot
//pre: none
//post: pos<MAX_SC_SLOTS

 unsigned int pos=findLeastUsed();
 unsigned int code=(((unsigned int)GET_SA_PARAMETER S)<<24)|pos;
 SC.sc_rcv(1, &code);//the room in the command queu e should be assured by previous controls
 (sc[pos].posArray)->slot=MAX_SC_SLOTS;
 //the S/C will call the ip_rcv method giving the SA parameters to be saved

 #ifndef NDEBUG
 assert(pos<MAX_SC_SLOTS);
 #endif;

 return pos;
}

saInfo* sC_driver::findSa(unsigned int sa){
//return the address of the searched sa
//pre: sa>0
//post: pos==NULL || pos>=sc && pos<sc+MAX_SA

 #ifndef NDEBUG
 assert(sa>0);
 #endif;

 //first we search into the sc array... maybe we're lucky!:-))
 scSlot* slot=sc;

 while (slot!=NULL && slot<sc+MAX_SC_SLOTS && (slot ->posArray)->sa!=sa) slot++;
 if (slot!=NULL && slot<sc+MAX_SC_SLOTS){

 #ifndef NDEBUG
 assert(slot->posArray==NULL||slot->posArray>=saA rray &&

slot->posArray<saArray+MAX_SA);
 #endif;

 return slot->posArray;
 }

 //if not found into the sc array we search into th e saArray
 saInfo* pos=saArray;
 while (pos!=NULL && pos<saArray+MAX_SA && pos->sa! =sa) pos++;

 if (pos!=NULL || pos>=saArray+MAX_SA) pos=NULL;

 #ifndef NDEBUG
 assert(pos==NULL||pos>=saArray && pos<saArray+MAX _SA);
 #endif;

 return pos;
}

int sC_driver::incOpened(){
//increments the number of opened devices checking that is never higher than one
//pre: none
//post: none

Appendix A The smart card interface code 143

 if(opened_dev==0){
 opened_dev++;
 return 1;
 }
 else return 0;

}

void sC_driver::decOpened(){
//decrements the number of opened devices
//pre: none
//post: none
 opened_dev--;
}

Appendix B Cache behavior simulation without delays 144

Appendix B. Cache behavior simulat ion without delays

//
//file: simul-no-delay.c
//
//simulation of a crypto-processor SA cache using a completely
//associative cache with the LRU policy. Cache miss es study only.
//
//written by Alberto Ferrante, April 2002

#include <stdio.h>
#include <string.h>

//program compilation option defines
//#define USE_FIN_PACKETS
//#define CLOSE_UNUSED
//#define PRINT_INSTANT_STATISTICS
//#define PRINT_CACHE_DISTRIB
//#define PRINT_SA_DISTRIB
//#define PRINT_CACHE_REUSE
//#define PRINT_SA_REUSE
//#define QUICK_MODE

//dimension of the data structures
#define CACHE_SIZE 256
#define MAX_SA 4000
#define ROW_LENGTH 70
#define MAX_DEL 1000

//scale factor for the timestamps; 0.00161 for reac hing 2Mbit/s
#define SCALE_TIME 1

//timeout for an unused connection
#define UNUSED_TIMEOUT 1800
//checking interval for unused connections
#define CHECK_TIME 60

struct dataT{ //data taken from file
 double time;
 int sourceIP;
 int destIP;
 int sourceTCP;
 int destTCP;
 int bytes;
};

struct SADel{ //element of the SAD
 int sourceIP;
 int destIP;
 int cached;
 unsigned counter;
 double time;
};

struct SACel{ //element of the SAC
 int sourceIP;
 int destIP;
 double time;
 long countUsed;
};

struct synFin{
 int sourceIP;
 int destIP;
 double time;
 int used;
};

Appendix B Cache behavior simulation without delays 145

char row[ROW_LENGTH]; //row of the data file
char rowFin[ROW_LENGTH]; //row of the syn/fin data file
FILE *infile; //input file
FILE *infileFin; //input file for TCP Syn/Fin
struct dataT datagram; //data related to each IP da tagram
struct SADel SAD[MAX_SA]; //Security Association DB
struct SACel SAC[CACHE_SIZE]; //Cached Security Ass ociation DB

struct SADel deletedSA[MAX_DEL]; //for taking track of the discarded SAs
struct SADel *last; //last element of the deleted SA list

struct synFin fin;

long discarded, //counts the discared SAs
 discardedOnce, //counts the number of SAs discard ed only once
 countUnused, //counts the number of SA are discard ed because unused
 howMany, //counts the number of opened SA
 prevMissPrint, //number of misses previously print ed
 prevCompulsoryPrint, //number of comp. missess pr ev. printed
 cacheReuse, //sum of the reuse data for each cache entry
 saReuse, //sum of the reuse of each SA
 saNum, //number of SAs
 cacheMisses, //total number ofa cache misses
 compulsoryMisses, //total number of comp. cache mi sses
 totalDatagrams, //total number of datagrams proce ssed
 sa,
 saDistr, //used for printing the SA distrib. over time
 oldSa, //used for printing the stastistics
 oldMiss, //used for printing the stastistics
 oldComp, //used for printing the stastistics
 closed;

double saTime; //used for printing the SA cache dis trib.

long bytes; //total bytes processed

double discardTime, //for computing statistics on discarded SAs
 shortestDiscardTime,
 longestDiscardTime,
 unusedTime;

double toDouble(char* base, char* end){ //converts a string to a double
 double tmp=*base-48;
 int div=10;

 while(++base<end && *base!='.'){
 tmp=tmp*10+(*base)-48;
 }
 while(++base<end){
 tmp=tmp+((float)(*base-48))/div;
 div*=10;
 }

 return tmp;
}

int toInt(char* base, char* end){ //converts a str ing to an integer
 int tmp=(*base)-48;

 while(++base<end){
 tmp=tmp*10+(*base)-48;
 }

 return tmp;
}

void fill(char row[ROW_LENGTH]){ //fills the struct ure datagram with the data taken by file
 char *tmp=row;
 char *base=row;
 char *end;
 int length=strlen(row);

 /*setting datagram.time*/
 if ((end=strchr(row, ' '))<row+length){
 datagram.time=toDouble(base, end)*SCALE_TIME;
 base=end;

Appendix B Cache behavior simulation without delays 146

 }

 /*setting datagram.sourceIP*/
 if ((end=strchr(++base, ' '))<row+length){
 datagram.sourceIP=toInt(base, end);
 base=end;
 }

 /*setting datagram.destIP*/
 if ((end=strchr(++base, ' '))<row+length){
 datagram.destIP=toInt(base, end);
 base=end;
 }

 /*setting datagram.sourceTCP*/
 if ((end=strchr(++base, ' '))<row+length){
 datagram.sourceTCP=toInt(base, end);
 base=end;
 }

 /*setting datagram.destTCP*/
 if ((end=strchr(++base, ' '))<row+length){
 datagram.destTCP=toInt(base, end);
 base=end;
 }

 /*setting datagram.bytes*/
 end=row+length-1;
 base++;
 datagram.bytes=34+toInt(base, end);
}

struct SADel* searchSA(struct SADel* DB, struct SAD el *end, int source, int dest){
 //searches an element in a SAD-like array
 struct SADel* tmp=DB;

 while (tmp<end){
 if(tmp->sourceIP==source && tmp->destIP==dest)
 break;
 else
 tmp++;
 }

 if (tmp<end)
 return tmp;
 else
 return NULL;
}

struct SACel* searchCache(int source, int dest){ // searches an element in the SAC DB
 struct SACel* tmp=SAC;

 while (tmp<SAC+CACHE_SIZE){
 if(tmp->sourceIP==source && tmp->destIP==dest)
 break;
 else
 tmp++;
 }

 if (tmp<SAC+CACHE_SIZE)
 return tmp;
 else
 return NULL;
}

struct SACel* replace(){ //cache replace with RLU p olicy
 struct SACel* tmp;
 struct SACel* which=SAC;
 struct SADel* sa;

 for (tmp=SAC+1; tmp<SAC+CACHE_SIZE; tmp++)
 if (tmp->time<which->time)
 which=tmp;

 cacheReuse+=which->countUsed;
#ifdef PRINT_CACHE_REUSE

Appendix B Cache behavior simulation without delays 147

 printf("%d\n", which->countUsed);
#endif

 if((sa=searchSA(SAD, SAD+MAX_SA, which->sourceIP, which->destIP))!=NULL)
 sa->cached=CACHE_SIZE;

 return which;
}

int addToCache(int newSA, int cachePos, int source, int dest){ //add an SA to the SAC
 //newSA==1 -> the SA is new, so no cache ent ry could exist
 struct SACel* where;

 if (newSA||cachePos>=CACHE_SIZE){
 cacheMisses++;
#ifdef PRINT_CACHE_DISTRIB
 if (datagram.time>=saTime+1){ //prints the distr ibution of the cache
 //misses over 1 sec intervals
 printf("%lf %d %d\n", saTime, cacheMisses-prevMi ssPrint,
 compulsoryMisses-prevCompulsoryPrint);
 saTime=(long)datagram.time;
 prevMissPrint=cacheMisses;
 prevCompulsoryPrint=compulsoryMisses;
 }
#endif //PRINT_CACHE_DISTRIB
 if (newSA)
 compulsoryMisses++;
 if ((where=searchCache(0, 0))==NULL)
 where=replace();
 where->sourceIP=source;
 where->destIP=dest;
 where->time=datagram.time;
 where->countUsed=1;
 return ((where-SAC));
 }
 else{
 SAC[cachePos].time=datagram.time;
 SAC[cachePos].countUsed++;
 return cachePos;
 }

}

void removeFromCache(struct SADel *sa){ //remove a SA from the SAC

 if (sa->cached<CACHE_SIZE){
 SAC[sa->cached].sourceIP=0;
 SAC[sa->cached].destIP=0;
 SAC[sa->cached].time=0;
 cacheReuse+=SAC[sa->cached].countUsed;
#ifdef PRINT_CACHE_REUSE
 printf("%d\n", SAC[sa->cached].countUsed);
#endif
 SAC[sa->cached].countUsed=0;
 sa->cached=CACHE_SIZE;
 }
}

struct SADel* unused(){ //find a SA to discard if all the slots in the SAD are full
 struct SADel* tmp=SAD;
 struct SADel* found=SAD;
 struct SADel* which;

 for (tmp=SAD+1; tmp<SAD+MAX_SA; tmp++){
 if ((datagram.time-tmp->time)>(datagram.time-foun d->time))
 found=tmp;
 }

 if((which=searchSA(deletedSA, last, found->sourceI P, found->destIP))!=NULL){
 which->counter++;
 discarded++;
 discardTime+=datagram.time-found->time;
 if (datagram.time-found->time<shortestDiscardTime)
 shortestDiscardTime=datagram.time-found->time;
 if (datagram.time-found->time>longestDiscardTime)

Appendix B Cache behavior simulation without delays 148

 longestDiscardTime=datagram.time-found->time;
 which->time=datagram.time;
 }
 else{
 if (last<deletedSA+MAX_DEL){
 last->sourceIP=found->sourceIP;
 last->destIP=found->destIP;
 last->counter=1;
 last->time=datagram.time;
 last++;
 }else printf("no more room for deleted SAs!");
 }
 sa--;

 return found;
}

struct SADel* addSA(int source, int dest){ //add a new SA
 struct SADel* which;

 if ((which=searchSA(SAD, SAD+MAX_SA, source, dest))!=NULL){
 which->counter++;
 which->time=datagram.time;
 which->cached=addToCache(0, which->cached, datagr am.sourceIP, datagram.destIP);
 }
 else{
 sa++;
#ifdef QUICK_MODE
 sa++;
#endif
#ifdef PRINT_SA_DISTRIB
 //prints the distribution of the new SA over 1 se c intervals
 if (datagram.time<saTime+1){
 saDistr++;
#ifdef QUICK_MODE
 saDistr++;
#endif
 }
 else{
 printf("%lf %d %d\n", saTime, saDistr, closed);
 saTime=(long)datagram.time;
 saDistr=2;
 closed=0;
 }
#endif //PRINT_SA_DISTRIB

#ifdef QUICK_MODE
 //adds SAs as in IKE phase 2 - quick mode
 if ((which=searchSA(SAD, SAD+MAX_SA, 0, 0))!=NULL){
 which->sourceIP=datagram.destIP;
 which->destIP=datagram.sourceIP;
 which->counter=1;
 which->time=datagram.time;
 which->cached=addToCache(1, CACHE_SIZE, datagram .destIP, datagram.sourceIP);
 }
 else{
 which=unused();
 removeFromCache(which);
 countUnused++;
 unusedTime+=datagram.time-which->time;
 which->sourceIP=datagram.destIP;
 which->destIP=datagram.sourceIP;
 which->counter=1;
 which->time=datagram.time;
 which->cached=addToCache(1, CACHE_SIZE, datagram .destIP, datagram.sourceIP);
 }
#endif //QUICK_MODE

 if ((which=searchSA(SAD, SAD+MAX_SA, 0, 0))!=NULL){
 which->sourceIP=datagram.sourceIP;
 which->destIP=datagram.destIP;
 which->counter=1;
 which->time=datagram.time;
 which->cached=addToCache(1, CACHE_SIZE, datagram .sourceIP, datagram.destIP);
 }
 else{

Appendix B Cache behavior simulation without delays 149

 which=unused();
 removeFromCache(which);
 countUnused++;
 unusedTime+=datagram.time-which->time;
 which->sourceIP=datagram.sourceIP;
 which->destIP=datagram.destIP;
 which->counter=1;
 which->time=datagram.time;
 which->cached=addToCache(1, CACHE_SIZE, datagram .sourceIP, datagram.destIP);
 }
 }

 return which;
}

void close(int source, int dest){ //closes a SA ba sing on the addresses given
 struct SADel* which;

 if ((which=searchSA(SAD, SAD+MAX_SA, source, dest))!=NULL){
 removeFromCache(which);
 which->sourceIP=0;
 which->destIP=0;

#if defined(USE_FIN_PACKETS) || defined (CLOSE_UNUS ED)
 saReuse+=which->counter;
 saNum++;
#ifdef PRINT_SA_REUSE
 printf("%d %d\n", saNum, which->counter);
#endif //PRINT_SA_REUSE
#endif //USE_FIN_PACKETS || CLOSE_UNUSED

 which->counter=0;
 which->time=0;
 sa--;
#ifdef PRINT_SA_DISTRIB
 closed++;
#endif
 }
}

void closeNumber(struct SADel* which){ //close a S A based on the pointer passed

 if (which!=NULL && which>=SAD && which<SAD+MAX_SA) {
 removeFromCache(which);
 which->sourceIP=0;
 which->destIP=0;

#if defined(USE_FIN_PACKETS) || defined (CLOSE_UNUS ED)
 saReuse+=which->counter;
 saNum++;
#ifdef PRINT_SA_REUSE
 printf("%d %d\n", saNum, which->counter);
#endif //PRINT_SA_REUSE
#endif //USE_FIN_PACKETS || CLOSE_UNUSED

 which->counter=0;
 which->time=0;
 sa--;
#ifdef PRINT_SA_DISTRIB
 closed++;
#endif
 }
}

int fillFin(char row[ROW_LENGTH]){ //fills the stru cture datagram with the data taken by file
 char *tmp=row;
 char *base=row;
 char *end;
 int length=strlen(row);

 /*setting fin.time*/
 if ((end=strchr(row, ' '))<row+length){
 fin.time=toDouble(base, end)*SCALE_TIME;
 base=end;
 }

Appendix B Cache behavior simulation without delays 150

 /*setting fin.sourceIP*/
 if ((end=strchr(++base, ' '))<row+length){
 fin.sourceIP=toInt(base, end);
 base=end;
 }

 /*setting fin.destIP*/
 if ((end=strchr(++base, ' '))<row+length){
 fin.destIP=toInt(base, end);
 base=end;
 }

 /*setting fin.sourceTCP*/
 if ((end=strchr(++base, ' '))<row+length){
 base=end;
 }

 /*setting fin.destTCP*/
 if ((end=strchr(++base, ' '))<row+length){
 base=end;
 }

 if ((end=strchr(++base, ' '))<row+length){
 }
 fin.used=0;
 return (*base=='F');
}

void checkFin(){ //checks the SAs to be closed whe n a FIN packet is received
 char* tmp;
 if (datagram.time>=fin.time){
 if (fin.used==0){
 close(fin.sourceIP, fin.destIP);
 fin.used=1;
 }
 while (fgets(rowFin, ROW_LENGTH, infileFin)!=NULL && datagram.time>=fin.time){
 while (!fillFin(rowFin)){
 if((tmp=fgets(rowFin, ROW_LENGTH, infileFin))== NULL)
 break;
 }
 if (tmp!=NULL && datagram.time>=fin.time){
 close(fin.sourceIP, fin.destIP);
 fin.used=1;
 }
 }
 }
}

int main(void){
 struct SADel* tmp;
 struct SADel* tmpSAD;
 struct SACel* tmp1;
 unsigned i=0;
 long lastCheck;
 long oldestConnTime;

 saReuse=0;
 saNum=0;
 lastCheck=0;
 oldestConnTime=0;
 cacheReuse=0;
 closed=0;
 bytes=0;
 sa=0;
 saDistr=0;
 saTime=0;
 shortestDiscardTime=1e6;
 longestDiscardTime=0;
 discardTime=0;
 discarded=0;
 last=deletedSA;
 howMany=0;
 unusedTime=0;
 countUnused=0;
 cacheMisses=0;
 compulsoryMisses=0;
 prevMissPrint=0;

Appendix B Cache behavior simulation without delays 151

 prevCompulsoryPrint=0;
 totalDatagrams=0;
 fin.used=1;
 for (tmp=SAD; tmp<SAD+MAX_SA; tmp++){
 tmp->sourceIP=0;
 tmp->destIP=0;
 tmp->time=0;
 tmp->counter=0;
 tmp->cached=CACHE_SIZE;
 }
 for (tmp=deletedSA; tmp<deletedSA+MAX_DEL; tmp++){
 tmp->sourceIP=0;
 tmp->destIP=0;
 tmp->time=0;
 tmp->counter=0;
 }

 for(tmp1=SAC; tmp1<SAC+CACHE_SIZE; tmp1++){
 tmp1->sourceIP=0;
 tmp1->destIP=0;
 tmp1->time=0;
 tmp1->countUsed=0;
 }

 infile=fopen("/home/alberto/tesi/simulations/lbl-t cp-3/lbl-tcp-3.tcp", "r");
#ifdef USE_FIN_PACKETS
 infileFin=fopen("/home/alberto/tesi/simulations/lb l-tcp-3/lbl-tcp-3.sf", "r");
#endif
 /*infile=fopen("/home/alberto/tesi/simulations/lbl -pkt-4/lbl-pkt-4.tcp", "r");
#ifdef USE_FIN_PACKETS
 infileFin=fopen("/home/alberto/tesi/simulations/l bl-pkt-4/lbl-pkt-4.sf", "r");
#endif*/

 while (fgets(row, ROW_LENGTH,infile)!=NULL){
 fill(row);
 totalDatagrams++;
 bytes+=datagram.bytes;
 tmp=addSA(datagram.sourceIP, datagram.destIP);
 if (tmp!=NULL && tmp->counter==0){
 printf("SA closed: max SA usage reached");
 closeNumber(tmp);
 }
#ifdef USE_FIN_PACKETS
 checkFin();
#endif

#ifdef CLOSE_UNUSED
 if (datagram.time>=lastCheck+CHECK_TIME){//each C HEC_TIME sec, checks and closes
 //all the SA not used for more than
 //UNUSED_TIMEOUT secs
 if (datagram.time-oldestConnTime>=UNUSED_TIMEOUT){
 oldestConnTime=datagram.time;
 for(tmpSAD=SAD; tmpSAD<SAD+MAX_SA; tmpSAD++){
 if(tmpSAD->sourceIP!=0 && tmpSAD->destIP!=0){
 if (datagram.time-tmpSAD->time>=UNUSED_TIMEOU T){
 /*printf("%d %d %lf %lf\n",
 tmpSAD->sourceIP,
 tmpSAD->destIP,
 datagram.time, tmpSAD->time);*/
 closeNumber(tmpSAD);
 }
 else if (tmpSAD->time<oldestConnTime)
 oldestConnTime=tmpSAD->time;
 }
 }
 }
 lastCheck=(long)datagram.time;
 }
#endif //CLOSE_UNUSED

#ifdef PRINT_INSTANT_STATISTICS
 //prints the info about opened SA and cache misse s for each datagram
 if(oldSa!=sa || oldMiss!=cacheMisses || oldComp!= compulsoryMisses){
 oldSa=sa;
 oldMiss=cacheMisses;
 oldComp=compulsoryMisses;
 printf("%lf %d %d %d\n", datagram.time, sa, cach eMisses, compulsoryMisses);

Appendix B Cache behavior simulation without delays 152

 }
#endif //PRINT_INSTANT_STATISTICS

 /*printf("%lf %d %d %d %d %d *** %s\n ", datagra m.time, datagram.sourceIP,
 datagram.destIP, datagram.sourceTCP,
 datagram.destTCP, datagram.bytes, row);*/
 }

 fclose(infile);
#ifdef USE_FIN_PACKETS
 fclose(infileFin);
#endif

 /*howMany=0;
 for (i=0; i<MAX_DEL && !(deletedSA[i].sourceIP==0 && deletedSA[i].destIP==0); i++){
 howMany+=deletedSA[i].counter;
 if(deletedSA[i].counter==1)
 discardedOnce++;
 }*/

#if !defined(USE_FIN_PACKETS) && !defined (CLOSE_UN USED)
 saReuse=0;
 for (i=0; i<MAX_SA; i++){
 if (SAD[i].sourceIP!=0 && SAD[i].destIP!=0){
 saReuse+=SAD[i].counter;
#ifdef PRINT_SA_REUSE
 printf("%d %d\n", i, SAD[i].counter);
#endif //PRINT_SA_REUSE
 }
 }
#endif //USE_FIN_PACKETS || CLOSE_UNUSED

#if defined(USE_FIN_PACKETS) || defined (CLOSE_UNUS ED)
 for (i=0; i<MAX_SA; i++){
 if (SAD[i].sourceIP!=0 && SAD[i].destIP!=0){
 saReuse+=SAD[i].counter;
#ifdef PRINT_SA_REUSE
 printf("%d %d\n", i, SAD[i].counter);
#endif //PRINT_SA_REUSE
 }
 }
 saNum+=sa;
#endif //USE_FIN_PACKETS || CLOSE_UNUSED

 for(tmp1=SAC; tmp1<SAC+CACHE_SIZE; tmp1++){
 if (tmp1->sourceIP!=0 && tmp1->destIP!=0){
 cacheReuse+=tmp1->countUsed;
#ifdef PRINT_CACHE_REUSE
 printf("%d\n", tmp1->countUsed);
#endif
 }
 }

 fprintf(stderr, "\n******************************* ********************************\n");
 fprintf(stderr, "********************************* ******************************\n");
 fprintf(stderr, "max number of SA: %d; cache size %d\n", MAX_SA, CACHE_SIZE);
#ifdef USE_FIN_PACKETS
 fprintf(stderr, "Using FIN TCP packets for SA clos ing\n");
#endif

#ifdef CLOSE_UNUSED
 fprintf(stderr, "Closing connections after an unus ed timeout of %ds (checking each %ds)\n",
 UNUSED_TIMEOUT, CHECK_TIME);
#endif
 fprintf(stderr, "********************************* ******************************\n\n");

 /*
 fprintf(stderr, "SAs discarded more than one time: %d\n", discarded);
 fprintf(stderr, "SAs discarded once: %d\n", discar dedOnce);
 */

 fprintf(stderr, "Total number of datagrams analyze d %d\n", totalDatagrams);
 fprintf(stderr, "Average dimension of datagrams (3 4bytes of header): %.2fbytes\n",
 (float)bytes/(float)totalDatagrams);
 fprintf(stderr, "Average data rate: %.3fkbit/s\n", 8*(float)(bytes)/datagram.time/1024);
 fprintf(stderr, "Average connections managed per s econd: %.2f\n",

(float)(totalDatagrams)/datagram.time);

Appendix B Cache behavior simulation without delays 153

#if !defined(USE_FIN_PACKETS) && !defined (CLOSE_UN USED)
 fprintf(stderr, "Average reuse of each SA: %.2f\n" , (float)saReuse/(float)sa);
#endif //!USE_FIN_PACKETS || !CLOSE_UNUSED

#if defined(USE_FIN_PACKETS) || defined (CLOSE_UNUS ED)
 fprintf(stderr, "Average reuse of each SA (before closing): %.2f\n",

(float)saReuse/(float)saNum);
#endif //USE_FIN_PACKETS || CLOSE_UNUSED

 /*
 fprintf(stderr, "average reuse of discarded SAs: % .2f\n", (float)howMany/(float)i);
 fprintf(stderr, "shortest time between two discard s of \"the same\" SA: %.2lfs\n",

shortestDiscardTime);
 fprintf(stderr, "longest time between two discards of \"the same\" SA: %.2lfs\n",

longestDiscardTime);
 fprintf(stderr, "average time between two discards of \"the same\" SA: %.2lfs\n",
 discardTime/(float)discarded);
 fprintf(stderr, "average unused time between repla cement: %.2lfs\n",

unusedTime/(float)countUnused);
 */

 fprintf(stderr, "\nTotal cache misses: %d (%.2f\%) \n", cacheMisses,
 100*(float)cacheMisses/(float)totalDatagrams);
 fprintf(stderr, "Compulsory misses: %d\n", compuls oryMisses);
 fprintf(stderr, "Avoidable cache misses: %d (%.2f\ %)\n", cacheMisses-compulsoryMisses,
 100*(float)(cacheMisses-compulsoryMisses)/(flo at)totalDatagrams);

 fprintf(stderr, "Average reuse of each cache posit ion before replacing %.2f\n",
 (float)cacheReuse/(float)cacheMisses);

 return 0;
}

Appendix C Cache behavior simulation considering the crypto processor delays 154

Appendix C. Cache behavior s imulation consider ing the

crypto processor delays

//
//file: simul-delay.c
//
//simulation of a crypto-processor SA cache using a completely
//associative cache with the LRU policy. Study of t he
//delay introduced by the crypto processor, regardl ess of the
//SA creation phase
//
//written by Alberto Ferrante, April 2002

#include <stdio.h>
#include <string.h>
#include <math.h>

//program compilation option defines
//#define USE_FIN_PACKETS
//#define CLOSE_UNUSED
//the value defined for PRINT_THROUGHPUT_DISTRIB is also used for timing the printing
#define PRINT_THROUGHPUT_DISTRIB 0.25
#define PRINT_CACHE_DISTRIB

//#define QUICK_MODE

//dimension of the data structures
#define CACHE_SIZE 128
#define MAX_SA 4000
#define ROW_LENGTH 70
#define MAX_DEL 1000

//scale factor for the timestamps; 0.00161 for reac hing 200Mbit/s of throughput
#define SCALE_TIME 0.00161

//minimum distance between two datagram
#define MIN_DISTANCE 1e-12

//timeout for an unused connection
#define UNUSED_TIMEOUT 1800
//checking interval for unused connections
#define CHECK_TIME 60

//delay parameters
#define CHANNELL 1.515e-8
#define CHANNELL_INITIAL 1.515e-8
#define CACHED_DELAY 5e-9
//100MHz AES hardware
//#define ENC_TIME 2.2e-7
//#define ENC_SETUP 1.7e-7
//80MHz AES hardware
//#define ENC_TIME 2.75e-7
//#define ENC_SETUP 2.125e-7
//70MHz AES hardware
//#define ENC_TIME 3.14e-7
//#define ENC_SETUP 2.42e-7
//60MHz AES hardware
#define ENC_TIME 3.67e-7
#define ENC_SETUP 2.83e-7
//55MHz AES hardware
//#define ENC_TIME 4e-7
//#define ENC_SETUP 3.09e-7
//50MHz AES hardware
//#define ENC_TIME 4.4e-7
//#define ENC_SETUP 3.4e-7
#define SAINFO_LEN 66
#define KEY 3
#define CRC_TIME 4e-8

struct dataT{ //data taken from file

Appendix C Cache behavior simulation considering the crypto processor delays 155

 double time;
 double theorTime;
 int sourceIP;
 int destIP;
 int sourceTCP;
 int destTCP;
 int bytes;
};

struct SADel{ //element of the SAD
 int sourceIP;
 int destIP;
 int cached;
 unsigned counter;
 double time;
};

struct SACel{ //element of the SAC
 int sourceIP;
 int destIP;
 double time;
};

struct synFin{ //Syn Fin packet data
 int sourceIP;
 int destIP;
 double time;
 int used;
};

char row[ROW_LENGTH]; //row of the data file
char rowFin[ROW_LENGTH]; //row of the syn/fin data file
FILE *infile; //input file
FILE *infileFin; //input file for TCP Syn/Fin
#ifdef PRINT_THROUGHPUT_DISTRIB
FILE *outTdistrib;
#endif
#ifdef PRINT_CACHE_DISTRIB
FILE *outcachedistrib;
#endif
struct dataT datagram; //data related to each IP da tagram
struct SADel SAD[MAX_SA]; //Security Association DB
struct SACel SAC[CACHE_SIZE]; //Cached Security Ass ociation DB

struct SADel deletedSA[MAX_DEL]; //for taking track of the discarded SAs
struct SADel *last; //last element of the deleted SA list

struct synFin fin;

long discarded, //counts the discared SAs
 discardedOnce, //counts the number of SAs discard ed only once
 countUnused, //counts the number of SA are discard ed because unused
 howMany, //counts the number of opened SA
 delayed, //counts the number of SAs that are dela yed due to processing time
 prevMissPrint, //number of misses previously print ed
 prevCompulsoryPrint, //number of comp. missess pr ev. printed
 cacheMisses, //total number ofa cache misses
 compulsoryMisses, //total number of comp. cache mi sses
 totalDatagrams, //total number of datagrams proce ssed
 sa,
 saDistr, //used for printing the SA distrib. over time
 oldSa, //used for printing the stastistics
 oldMiss, //used for printing the stastistics
 oldComp; //used for printing the stastistics

double saTime, //used for printing the SA cache dis trib.
 delay, //keeps track of the delay introduced by t he datagram processing
 lastTimestamp, //timestamp of the last datagram a nalizied
 procTime; //total time used for processing

long bytes; //total bytes processed

double discardTime, //for computing statistics on discarded SAs
 shortestDiscardTime,
 longestDiscardTime,

Appendix C Cache behavior simulation considering the crypto processor delays 156

 unusedTime;

double toDouble(char* base, char* end){ //converts a string to a double
 double tmp=*base-48;
 int div=10;

 while(++base<end && *base!='.'){
 tmp=tmp*10+(*base)-48;
 }
 while(++base<end){
 tmp=tmp+((float)(*base-48))/div;
 div*=10;
 }

 return tmp;
}

int toInt(char* base, char* end){ //converts a str ing to an int
 int tmp=(*base)-48;

 while(++base<end){
 tmp=tmp*10+(*base)-48;
 }

 return tmp;
}

void fill(char row[ROW_LENGTH]){ //fills the struct ure datagram with the data taken by file
 char *tmp=row;
 char *base=row;
 char *end;
 int length=strlen(row);

 /*setting datagram.time*/
 if ((end=strchr(row, ' '))<row+length){
 datagram.time=toDouble(base, end)*SCALE_TIME;
 datagram.theorTime=datagram.time;
 base=end;
 }

 /*setting datagram.sourceIP*/
 if ((end=strchr(++base, ' '))<row+length){
 datagram.sourceIP=toInt(base, end);
 base=end;
 }

 /*setting datagram.destIP*/
 if ((end=strchr(++base, ' '))<row+length){
 datagram.destIP=toInt(base, end);
 base=end;
 }

 /*setting datagram.sourceTCP*/
 if ((end=strchr(++base, ' '))<row+length){
 datagram.sourceTCP=toInt(base, end);
 base=end;
 }

 /*setting datagram.destTCP*/
 if ((end=strchr(++base, ' '))<row+length){
 datagram.destTCP=toInt(base, end);
 base=end;
 }

 /*setting datagram.bytes*/
 end=row+length-1;
 base++;
 datagram.bytes=34+toInt(base, end);
}

struct SADel* searchSA(struct SADel* DB, struct SAD el *end, int source, int dest){
 //searches an element in a SAD-like array
 struct SADel* tmp=DB;

 while (tmp<end){
 if(tmp->sourceIP==source && tmp->destIP==dest)
 break;

Appendix C Cache behavior simulation considering the crypto processor delays 157

 else
 tmp++;
 }

 if (tmp<end)
 return tmp;
 else
 return NULL;
}

struct SACel* searchCache(int source, int dest){ // searches an element in the SAC DB
 struct SACel* tmp=SAC;

 while (tmp<SAC+CACHE_SIZE){
 if(tmp->sourceIP==source && tmp->destIP==dest)
 break;
 else
 tmp++;
 }

 if (tmp<SAC+CACHE_SIZE)
 return tmp;
 else
 return NULL;
}

struct SACel* replace(){ //cache replace with LRU p olicy
 struct SACel* tmp;
 struct SACel* which=SAC;
 struct SADel* sa;

 for (tmp=SAC+1; tmp<SAC+CACHE_SIZE; tmp++)
 if (tmp->time<which->time)
 which=tmp;
 if((sa=searchSA(SAD, SAD+MAX_SA, which->sourceIP, which->destIP))!=NULL)
 sa->cached=CACHE_SIZE;

 //store delay
 delay+=(double)ENC_SETUP+(double)KEY*(double)ENC_T IME+(double)(SAINFO_LEN-2)*CRC_TIME+
 (ceil((double)SAINFO_LEN/4)+1)*(double)CHANNELL+(double)CHANNELL_INITIAL*2+
 (double)CHANNELL;

 return which;
}

int addToCache(int newSA, int cachePos, int source, int dest){ //add an SA to the SAC
 //newSA==1 -> the SA is new, so no cache ent ry could exist
 struct SACel* where;

 delay+=CACHED_DELAY;
 if (newSA||cachePos>=CACHE_SIZE){
 //miss delay
 delay+=(double)ENC_SETUP+(double)KEY*(double)ENC_ TIME+(double)(SAINFO_LEN-2)*CRC_TIME+
 (ceil((double)SAINFO_LEN/4)+1)*(double)CHANNELL+ (double)CHANNELL_INITIAL;
 cacheMisses++;
#ifdef PRINT_CACHE_DISTRIB
 if (datagram.time>=saTime+0.10){ //prints the di stribution of the cache
 //misses over 1 sec intervals
 fprintf(outcachedistrib, "%lf %d %d\n", saTime, cacheMisses-prevMissPrint,
 compulsoryMisses-prevCompulsoryPrint);
 saTime=datagram.time;
 prevMissPrint=cacheMisses;
 prevCompulsoryPrint=compulsoryMisses;
 }
#endif //PRINT_CACHE_DISTRIB

 if (newSA)
 compulsoryMisses++;
 if ((where=searchCache(0, 0))==NULL)
 where=replace();

 /*printf("pos %d: in %d %d %lf, out %d %d %lf\n", where-SAC, datagram.sourceIP,
 datagram.destIP, datagram.time, where->sourceIP ,
 where->destIP, where->time);*/

Appendix C Cache behavior simulation considering the crypto processor delays 158

 where->sourceIP=source;
 where->destIP=dest;
 where->time=datagram.time;
 return ((where-SAC));
 }
 else{
 SAC[cachePos].time=datagram.time;
 /*printf("Update pos %d: in %d %d %lf, out %d %d %lf\n", cachePos, datagram.sourceIP,
 datagram.destIP, datagram.time, SAC[cachePos].s ourceIP,
 SAC[cachePos].destIP, SAC[cachePos].time);*/
 return cachePos;
 }

}

void removeFromCache(struct SADel *sa){ //remove a SA from the SAC

 if (sa->cached<CACHE_SIZE){
 SAC[sa->cached].sourceIP=0;
 SAC[sa->cached].destIP=0;
 SAC[sa->cached].time=0;
 sa->cached=CACHE_SIZE;
 }
}

struct SADel* unused(){ //find a SA to discard if all the slots in the SAD are full
 struct SADel* tmp=SAD;
 struct SADel* found=SAD;
 struct SADel* which;

 for (tmp=SAD+1; tmp<SAD+MAX_SA; tmp++){
 if ((datagram.time-tmp->time)>(datagram.time-foun d->time))
 found=tmp;
 }

 if((which=searchSA(deletedSA, last, found->sourceI P, found->destIP))!=NULL){
 which->counter++;
 discarded++;
 discardTime+=datagram.time-found->time;
 if (datagram.time-found->time<shortestDiscardTime)
 shortestDiscardTime=datagram.time-found->time;
 if (datagram.time-found->time>longestDiscardTime)
 longestDiscardTime=datagram.time-found->time;
 which->time=datagram.time;
 }
 else{
 if (last<deletedSA+MAX_DEL){
 last->sourceIP=found->sourceIP;
 last->destIP=found->destIP;
 last->counter=1;
 last->time=datagram.time;
 last++;
 }else printf("no more room for deleted SAs!");
 }
 sa--;

 return found;
}

double process(int first){ //stub for simulating t he packet processing

 return (((double)CHANNELL_INITIAL+
 (double)(ceil((float)(datagram.bytes+16*first)/4) +2)*(double)CHANNELL)+
 ((double)CHANNELL_INITIAL+
 (double)(ceil((float)(datagram.bytes)/4)+1)*(doub le)CHANNELL)
 +(double)ENC_SETUP+(double)ENC_TIME*ceil((double) datagram.bytes/16));
}

struct SADel* addSA(int source, int dest){ //adds a new SA
 struct SADel* which;

 delay=0;
 if ((which=searchSA(SAD, SAD+MAX_SA, source, dest))!=NULL){
 which->counter++;

Appendix C Cache behavior simulation considering the crypto processor delays 159

 which->cached=addToCache(0, which->cached, datagr am.sourceIP, datagram.destIP);
 delay+=process(0);
 }
 else{
 //SA creation as in IKE Phase 2 quick mode
#ifdef QUICK_MODE
 sa++;
 if ((which=searchSA(SAD, SAD+MAX_SA, 0, 0))==NULL){
 which=unused();
 removeFromCache(which);
 countUnused++;
 unusedTime+=datagram.time-which->time;
 }
 which->sourceIP=datagram.destIP;
 which->destIP=datagram.sourceIP;
 which->counter=1;
 which->cached=addToCache(1, CACHE_SIZE, datagram. destIP, datagram.sourceIP);
#endif //QUICK_MODE

 sa++;
 if ((which=searchSA(SAD, SAD+MAX_SA, 0, 0))==NULL){
 which=unused();
 removeFromCache(which);
 countUnused++;
 unusedTime+=datagram.time-which->time;
 }
 which->sourceIP=datagram.sourceIP;
 which->destIP=datagram.destIP;
 which->counter=1;
 which->cached=addToCache(1, CACHE_SIZE, datagram. sourceIP, datagram.destIP);
 delay+=process(1);
 }
 which->time=datagram.time+delay;
 lastTimestamp=which->time;
 procTime+=delay;
 SAC[which->cached].time=which->time;

 return which;
}

void close(int source, int dest){ //closes an SA
 struct SADel* which;

 if ((which=searchSA(SAD, SAD+MAX_SA, source, dest))!=NULL){
 removeFromCache(which);
 which->sourceIP=0;
 which->destIP=0;
 which->counter=0;
 which->time=0;
 sa--;
 }
}

void closeNumber(struct SADel* which){ //closes an SA already ahving its pointer

 if (which!=NULL && which>=SAD && which<SAD+MAX_SA) {
 removeFromCache(which);
 which->sourceIP=0;
 which->destIP=0;
 which->counter=0;
 which->time=0;
 sa--;
 }
}

int fillFin(char row[ROW_LENGTH]){ //fills the stru cture fin with the data taken by the sf file
 char *tmp=row;
 char *base=row;
 char *end;
 int length=strlen(row);

 /*setting fin.time*/
 if ((end=strchr(row, ' '))<row+length){
 fin.time=toDouble(base, end)*SCALE_TIME;
 base=end;

Appendix C Cache behavior simulation considering the crypto processor delays 160

 }

 /*setting fin.sourceIP*/
 if ((end=strchr(++base, ' '))<row+length){
 fin.sourceIP=toInt(base, end);
 base=end;
 }

 /*setting fin.destIP*/
 if ((end=strchr(++base, ' '))<row+length){
 fin.destIP=toInt(base, end);
 base=end;
 }

 /*setting fin.sourceTCP*/
 if ((end=strchr(++base, ' '))<row+length){
 base=end;
 }

 /*setting fin.destTCP*/
 if ((end=strchr(++base, ' '))<row+length){
 base=end;
 }

 if ((end=strchr(++base, ' '))<row+length){
 }
 //if(*base=='F')printf("%lf %d %d %c\n", fin.time, fin.sourceIP, fin.destIP, *base);
 fin.used=0;
 return (*base=='F');
}

void checkFin(){ //checks the connections to be cl osed
 char* tmp;

 if (datagram.theorTime>=fin.time){
 if (fin.used==0){
 close(fin.sourceIP, fin.destIP);
 fin.used=1;
 /*printf("%lf %lf %d %d\n", fin.time, datagram.t heorTime,
 fin.sourceIP, fin.destIP);*/
 }
 while (fgets(rowFin, ROW_LENGTH, infileFin)!=NULL && datagram.theorTime>=fin.time){
 while (!fillFin(rowFin)){
 if((tmp=fgets(rowFin, ROW_LENGTH, infileFin))== NULL)
 break;
 }
 if (tmp!=NULL && datagram.theorTime>=fin.time){
 close(fin.sourceIP, fin.destIP);
 /*printf("%lf %lf %d %d\n", fin.time, datagram. theorTime,
 fin.sourceIP, fin.destIP);*/
 fin.used=1;
 }
 }
 }
}

int main(void){
 struct SADel* tmp;
 struct SADel* tmpSAD;
 struct SACel* tmp1;
 unsigned i=0;
 long lastCheck;
 long oldestConnTime;
 double throughTime,
 throughTheorTime;
 long throughBytes;

//initialization
 throughBytes=0;
 throughTheorTime=0;
 throughTime=0;
 bytes=0;
 delayed=0;
 procTime=0;
 sa=0;
 saDistr=0;
 saTime=0;

Appendix C Cache behavior simulation considering the crypto processor delays 161

 shortestDiscardTime=1e6;
 longestDiscardTime=0;
 discardTime=0;
 discarded=0;
 last=deletedSA;
 howMany=0;
 unusedTime=0;
 countUnused=0;
 cacheMisses=0;
 compulsoryMisses=0;
 totalDatagrams=0;
 fin.used=1;
 for (tmp=SAD; tmp<SAD+MAX_SA; tmp++){
 tmp->sourceIP=0;
 tmp->destIP=0;
 tmp->time=0;
 tmp->counter=0;
 tmp->cached=CACHE_SIZE;
 }
 for (tmp=deletedSA; tmp<deletedSA+MAX_DEL; tmp++){
 tmp->sourceIP=0;
 tmp->destIP=0;
 tmp->time=0;
 tmp->counter=0;
 }

 for(tmp1=SAC; tmp1<SAC+CACHE_SIZE; tmp1++){
 tmp1->sourceIP=0;
 tmp1->destIP=0;
 tmp1->time=0;
 }

//opening the files
 infile=fopen("/home/alberto/tesi/simulations/lbl-t cp-3/lbl-tcp-3.tcp", "r");
#ifdef USE_FIN_PACKETS
 infileFin=fopen("/home/alberto/tesi/simulations/lb l-tcp-3/lbl-tcp-3.sf", "r");
#endif
/* infile=fopen("/home/alberto/tesi/simulations/lbl -pkt-4/lbl-pkt-4.tcp", "r");
#ifdef USE_FIN_PACKETS
 infileFin=fopen("/home/alberto/tesi/simulations/l bl-pkt-4/lbl-pkt-4.sf", "r");
#endif*/

#ifdef PRINT_THROUGHPUT_DISTRIB
 outTdistrib=fopen("res/throughput.txt", "w");
#endif

#ifdef PRINT_CACHE_DISTRIB
 outcachedistrib=fopen("res/cacheDistr.txt", "w");
#endif

 while (fgets(row, ROW_LENGTH,infile)!=NULL){
 fill(row);
 if (datagram.time<lastTimestamp){
 datagram.time=lastTimestamp+MIN_DISTANCE;
 }
 //printf("%lf %lf\n", datagram.time, lastTimestam p);
 totalDatagrams++;
 bytes+=datagram.bytes;
 tmp=addSA(datagram.sourceIP, datagram.destIP);
 if (datagram.time!=datagram.theorTime){
 delayed++;
 }

#ifdef PRINT_THROUGHPUT_DISTRIB
 if (datagram.time<throughTime+PRINT_THROUGHPUT_DI STRIB){
 throughBytes+=datagram.bytes;
 }
 else{
 fprintf(outTdistrib, "%.2lf %.2lf %.2lf %.2lf\n" , throughTime,
 8*(double)throughBytes/(datagram.time-throughTi me), throughTheorTime,
 8*(double)throughBytes/(datagram.theorTime-thro ughTheorTime));
 throughTime=datagram.time;
 throughTheorTime=datagram.theorTime;
 throughBytes=datagram.bytes;
 }
#endif

Appendix C Cache behavior simulation considering the crypto processor delays 162

 if (tmp!=NULL && tmp->counter==0){
 printf("SA closed: max SA usage reached");
 closeNumber(tmp);
 }

#ifdef USE_FIN_PACKETS
 checkFin();
#endif

#ifdef CLOSE_UNUSED
 if (datagram.time>=lastCheck+CHECK_TIME){//each C HEC_TIME sec, checks and closes
 //all the SA not used for more than
 //UNUSED_TIMEOUT secs
 if (datagram.time-oldestConnTime>=UNUSED_TIMEOUT){
 oldestConnTime=datagram.time;
 for(tmpSAD=SAD; tmpSAD<SAD+MAX_SA; tmpSAD++){
 if(tmpSAD->sourceIP!=0 && tmpSAD->destIP!=0){
 if (datagram.time-tmpSAD->time>=UNUSED_TIMEOU T){
 /*printf("%d %d %lf %lf\n",
 tmpSAD->sourceIP,
 tmpSAD->destIP,
 datagram.time, tmpSAD->time);*/
 closeNumber(tmpSAD);
 }
 else if (tmpSAD->time<oldestConnTime)
 oldestConnTime=tmpSAD->time;
 }
 }
 }
 lastCheck=(long)datagram.time;
 }
#endif //CLOSE_UNUSED

 }

//computing some statistics on the discarded SAs
 /*howMany=0;
 for (i=0; i<MAX_DEL && !(deletedSA[i].sourceIP==0 && deletedSA[i].destIP==0); i++){
 howMany+=deletedSA[i].counter;
 if(deletedSA[i].counter==1)
 discardedOnce++;
 }*/

#ifdef PRINT_THROUGHPUT_DISTRIB
 fprintf(outTdistrib, "%.2lf %.2lf %.2lf %.2lf\n", throughTime,
 (double)throughBytes/(datagram.time-throughTime), throughTheorTime,
 (double)throughBytes/(datagram.theorTime-throughT heorTime));
#endif

//closing the files
 fclose(infile);
#ifdef USE_FIN_PACKETS
 fclose(infileFin);
#endif

#ifdef PRINT_THROUGHPUT_DISTRIB
 fclose(outTdistrib);
#endif

#ifdef PRINT_CACHE_DISTRIB
 fclose(outcachedistrib);
#endif

//printing the results to standard error

fprintf(stderr, "\n******************************** *******************************\n");
fprintf(stderr, "********************************** *****************************\n");

 fprintf(stderr, "max number of SA: %d; cache size %d\n\n", MAX_SA, CACHE_SIZE);
 fprintf(stderr, "Time scale factor: %lf\n", SCALE_ TIME);
 fprintf(stderr, "Channel initial time: %.3es\n", C HANNELL_INITIAL);
 fprintf(stderr, "Channell transfer time (burst of 4 bytes): %.3es\n", CHANNELL);
 fprintf(stderr, "Encryption setup time: %.3es\n", ENC_SETUP);
 fprintf(stderr, "Encryption time for a 128-bit blo ck: %.3es\n", ENC_TIME);
 fprintf(stderr, "Cache access time: %.3es\n", CACH ED_DELAY);
 fprintf(stderr, "CRC generation time for a byte: % .3es\n", CRC_TIME);
#ifdef USE_FIN_PACKETS

Appendix C Cache behavior simulation considering the crypto processor delays 163

 fprintf(stderr, "Using FIN TCP packets for SA clos ing\n");
#endif

#ifdef CLOSE_UNUSED
 fprintf(stderr, "Closing connections after an unus ed timeout of %ds (checking each %ds)\n",
 UNUSED_TIMEOUT, CHECK_TIME);
#endif
 fprintf(stderr, "********************************* ******************************\n\n");

 fprintf(stderr, "Total number of datagrams analyze d %d\n", totalDatagrams);
 fprintf(stderr, "Average dimension of datagrams (3 4bytes of header): %.2fbytes\n",
 (float)bytes/(float)totalDatagrams);
 fprintf(stderr, "Average data rate: %.3fkbit/s\n", 8*(float)(bytes)/lastTimestamp/1024);
 fprintf(stderr, "Theoretical average data rate: %. 3fkbit/s\n",

8*(float)(bytes)/datagram.theorTime/1024);
 fprintf(stderr, "Total processing time %lfs\n", pr ocTime);
 fprintf(stderr, "Average processing time %lfs\n", procTime/(double)totalDatagrams);
 fprintf(stderr, "Average connections managed per s econd: %.2f\n",

(float)(totalDatagrams)/datagram.time);
 fprintf(stderr, "\nTotal cache misses: %d (%.2f\%) \n", cacheMisses,
 100*(float)cacheMisses/(float)totalDatagrams);
 fprintf(stderr, "Compulsory misses: %d\n", compuls oryMisses);
 fprintf(stderr, "Avoidable cache misses: %d (%.2f\ %)\n", cacheMisses-compulsoryMisses,
 100*(float)(cacheMisses-compulsoryMisses)/(flo at)totalDatagrams);
 fprintf(stderr, "\nNumber of delayed datagrams %d (%.2lf\%)\n", delayed,
 (float)delayed*100/(float)totalDatagrams);

 return 0;
}

Appendix D Network timing evaluation 164

Appendix D. Network t iming evaluat ion

//
//file: network.c
//
//program for computing statistics on the network d elays
//
//written by Alberto Ferrante, April 2002

#include <stdio.h>
#include <string.h>
#include <limits.h>

//dimension of the data structures
#define ROW_LENGTH 70
#define MAX_EL 4000

struct dataT{ //data taken from file
 double time;
 int sourceIP;
 int destIP;
 int sourceTCP;
 int destTCP;
 int bytes;
};

struct statStruct{
 int sourceIP;
 int destIP;
 long counter;
 double maxTime;
 double minTime;
 double last;
 double sumTime;
 int replied;
};

char row[ROW_LENGTH]; //row of the data file
FILE *infile; //input file
struct dataT datagram; //data related to each IP da tagram
struct statStruct conn [MAX_EL]; //
unsigned last;

double toDouble(char* base, char* end){
 double tmp=*base-48;
 int div=10;

 while(++base<end && *base!='.'){
 tmp=tmp*10+(*base)-48;
 }
 while(++base<end){
 tmp=tmp+((float)(*base-48))/div;
 div*=10;
 }

 return tmp;
}

int toInt(char* base, char* end){
 int tmp=(*base)-48;

 while(++base<end){
 tmp=tmp*10+(*base)-48;
 }

 return tmp;
}

void fill(char row[ROW_LENGTH]){ //fills the struct ure datagram with the data taken by file
 char *tmp=row;
 char *base=row;
 char *end;

Appendix D Network timing evaluation 165

 int length=strlen(row);

 /*setting datagram.time*/
 if ((end=strchr(row, ' '))<row+length){
 datagram.time=toDouble(base, end);
 base=end;
 }

 /*setting datagram.sourceIP*/
 if ((end=strchr(++base, ' '))<row+length){
 datagram.sourceIP=toInt(base, end);
 base=end;
 }

 /*setting datagram.destIP*/
 if ((end=strchr(++base, ' '))<row+length){
 datagram.destIP=toInt(base, end);
 base=end;
 }

 /*setting datagram.sourceTCP*/
 if ((end=strchr(++base, ' '))<row+length){
 datagram.sourceTCP=toInt(base, end);
 base=end;
 }

 /*setting datagram.destTCP*/
 if ((end=strchr(++base, ' '))<row+length){
 datagram.destTCP=toInt(base, end);
 base=end;
 }

 /*setting datagram.bytes*/
 end=row+length-1;
 base++;
 datagram.bytes=34+toInt(base, end);
}

struct statStruct* searchConn(struct statStruct* DB , struct statStruct *end, int source, int dest){
 //searches an element in a SAD-like array
 struct statStruct* tmp=DB;

 while (tmp<end){
 if((tmp->sourceIP==source && tmp->destIP==dest) | |
 (tmp->sourceIP==dest && tmp->destIP==source))
 break;
 else
 tmp++;
 }

 if (tmp<end)
 return tmp;
 else
 return NULL;
}

void addConn(){
 struct statStruct* which;

 if ((which=searchConn(conn, conn+last, datagram.so urceIP, datagram.destIP))==NULL){
 which=searchConn(conn, conn+MAX_EL, 0, 0);
 which->sourceIP=datagram.sourceIP;
 which->destIP=datagram.destIP;
 last++;
 }

 if ((which->sourceIP==datagram.sourceIP && which-> replied==-1) ||
 (which->sourceIP==datagram.destIP && which->re plied==1)){
 which->sumTime+=datagram.time-which->last;
 if (which->maxTime<datagram.time-which->last)
 which->maxTime=datagram.time-which->last;
 if (which->minTime>datagram.time-which->last)
 which->minTime=datagram.time-which->last;
 which->last=datagram.time;
 which->counter++;
 which->replied=0;
 }

Appendix D Network timing evaluation 166

 else{
 if (which->sourceIP==datagram.sourceIP)
 which->replied=1;
 else
 which->replied=-1;

 which->last=datagram.time;
 }

}

int main(void){
 struct statStruct* tmp;
 long connections;
 long zero;
 double totalTime;
 double maxTime;
 double minTime;

 last=0;
 connections=0;
 totalTime=0;
 maxTime=0;
 minTime=7200;
 zero=0;

 for (tmp=conn; tmp<conn+MAX_EL; tmp++){
 tmp->sourceIP=0;
 tmp->destIP=0;
 tmp->maxTime=0;
 tmp->counter=0;
 tmp->last=0;
 tmp->sumTime=0;
 tmp->replied=0;
 tmp->minTime=7300;
 }

 infile=fopen("/home/alberto/tesi/simulations/lbl-t cp-3/lbl-tcp-3.tcp", "r");
 //infile=fopen("/home/alberto/tesi/simulations/lbl -pkt-4/lbl-pkt-4.tcp", "r");

 while (fgets(row, ROW_LENGTH,infile)!=NULL){
 fill(row);
 addConn();
 }

 fclose(infile);

 for (tmp=conn; tmp<conn+last; tmp++){
 if (tmp->sourceIP!=0 && tmp->destIP!=0 && tmp->co unter>0){
 printf("%d %d %d %.4lf %.4lf %.4lf\n", tmp->sou rceIP, tmp->destIP,

 tmp->counter, tmp->maxTime, tmp->minTime, tmp->sum Time/tmp->counter);
 connections++;
 totalTime+=tmp->sumTime/tmp->counter;
 if (tmp->maxTime>maxTime)
 maxTime=tmp->maxTime;
 if (tmp->minTime<minTime)
 minTime=tmp->minTime;
 }
 if (tmp->counter==0)
 zero++;
 }

 printf ("Average reply time: %.4lf\n", totalTime/c onnections);
 printf ("Max reply time: %.4lf\n", maxTime);
 printf ("Min reply time: %.4lf\n", minTime);
 printf ("Datagram without any reply: %d\n", zero);

 return 0;
}

