
 

 

 
Alberto Ferrante 

 

 

 

Security Association caching of a dedicated 

IPSec crypto-processor: dimensioning the 

cache and software interface 

 
 

Supervisor: Prof. Roberto Negrini 
(Politecnico di Milano) 

Assistant supervisor: Dr. Jefferson Owen  
(ST Microelectronics) 

 
 

May 2002 



 

 

Acknowledgements 

This work is dedicated to my parents and all my relatives 

for their help and support throughout my life and my 

academic career, for which I will always be grateful. 

I would like to thank  Jeff Owen and Prof. Roberto Negrini 

for their fundamental help in developing this thesis. 

I also want to thank my friends for playing such a 

fundamental role in my life, sharing with me the good and 

the bad moments. Among the others I want to especially  

thank Laura, Stefania, and Stephanie who also spent some of 

their time giving me precious suggestions on the language 

used in my thesis. 

In addition, I want to thank all the people of ALaRI: the 

secretariat, the professors, and all my master's 

colleagues, both for the important contribution to this 

project and for having shared with me such an important and 

positive experience. 

A special thanks to 2 Emme Progetti that lent me a laser 

printer to make hardcopies of this thesis. 

Last, but not least, I want to thank all my university 

fellows who gave me their friendship, shared with me some 

knowledge or had simply some good time with me. 



 

 

Notes on the project 

The first part of this project was developed during the 2000-2001 edition of the 

Advanced Learning and Research Institute (ALaRI) Master of Engineering in 

Embedded System Design, organized by Università della Svizzera italiana sited in 

Lugano (CH) in collaboration with Politecnico di Milano and ETH Zürich (CH). 

That part of the project was also presented on October 10, 2001 at the Swiss conference  

Technology Leadership Day 2001 at the Ecole d’Ingénieurs et d’Architectes de 

Fribourg (CH). The presentation, titled «The Smart Card System Project: from “Plastic 

Money” to Mobile Transaction Support», was made in collaboration with ing. Luca 

Mazzoni. 

 



 Table of Contents IV  
 

 

Table of Contents 

Abstract ................................................................................................................................................1 

1. Introduction ..................................................................................................................................2 

1.1. WHY WE DO NEED SECURITY AND CRYPTOGRAPHY...............................................................2 

1.2. CRYPTOGRAPHIC ALGORITHMS.............................................................................................3 

1.2.1. The symmetric key algorithms......................................................................................3 

1.2.2. The public key algorithms ............................................................................................3 

1.2.3. The Diffie-Hellman protocol ........................................................................................4 

1.3. AUTHENTICATION ALGORITHMS............................................................................................4 

1.4. THE IETF IPSEC PROTOCOL SUITE........................................................................................5 

1.4.1. The concept of IPSec Security Association ..................................................................6 

1.4.2. The Transport and the Tunnel modes...........................................................................7 

1.4.3. IKE: the key exchanging and the algorithm negotiation mechanisms.........................9 

1.4.4. The Security Policy Database (SPD) .........................................................................14 

1.4.5. The Security Association Database (SAD).................................................................14 

1.4.6. Adding AES to IPSec ..................................................................................................14 

1.4.7. Some notes about the available IPSec – IKE documentation ....................................14 

1.5. NETWORK ATTACKS............................................................................................................15 

2. Description of the global system................................................................................................16 

2.1. THE HARDWARE..................................................................................................................16 

2.2. THE SOFTWARE...................................................................................................................17 

2.3. SYSTEM USAGE SCENARIOS.................................................................................................17 

2.3.1. The simplest VPN scenario: two users communicating through Internet..................18 

2.3.2. A more complex VPN scenario: a mobile user connected to his company’s network 

through Internet..........................................................................................................................19 



 Table of Contents V 
 

 

2.3.3. Data tunneling between two gateways .......................................................................21 

3. The security policy .....................................................................................................................22 

3.1. THE KEY EXCHANGE MECHANISM: CREATION OF SAS.........................................................22 

3.1.1. Phase 1 Key exchange – ISAKMP SA ........................................................................22 

3.1.2. Phase 2 key exchange – IPSEC (AH-ESP) SA ...........................................................24 

3.2. ALGORITHMS.......................................................................................................................25 

3.2.1. Public Key Elliptic Curve Criptography....................................................................25 

3.2.2. Simmetric Key AES (Rijndael) Criptography.............................................................25 

3.2.3. Hash Algorithms.........................................................................................................26 

3.2.4. Authentication Algorithms (HMAC)...........................................................................26 

3.2.5. Algorithm negotiation ................................................................................................26 

3.3. SUPPORT FOR A CONCEPTUALLY INFINITE NUMBER OF SAS ................................................27 

3.3.1. Smart card SA database .............................................................................................27 

3.3.2. AES session key ..........................................................................................................28 

3.3.3. Diffie-Hellman secret .................................................................................................30 

3.4. AN IKE-IPSEC SECURITY POLICY EXAMPLE: THE CASE OF A MOBILE USER (“ROAD 

WARRIOR”) .....................................................................................................................................31 

3.4.1. IKE phase 1 ................................................................................................................31 

3.4.2. IKE phase 2 ................................................................................................................32 

3.4.3. SA Protocol selection .................................................................................................33 

4. The smart card – IPSec software interface.................................................................................34 

4.1. COMMANDS.........................................................................................................................34 

4.1.1. IPSec to smart card commands..................................................................................34 

4.1.2. Smart card to IPSec commands .................................................................................39 

4.1.3. Command table ..........................................................................................................41 

4.1.4. Error codes.................................................................................................................43 

4.2. SOFTWARE COMMUNICATION PROTOCOL............................................................................44 

4.2.1. Command Format A (1 word) ....................................................................................44 



 Table of Contents VI  
 

 

4.2.2. Command Format B (1+n word) ...............................................................................45 

4.2.3. Command Format C (1+1+n words).........................................................................45 

4.2.4. Command format tables .............................................................................................46 

4.3. THE COMMUNICATION FUNCTION........................................................................................47 

5. Writing the software interface C++ code ...................................................................................48 

5.1. UML CLASS DIAGRAM ........................................................................................................49 

5.2. TESTING METHODS..............................................................................................................51 

5.3. THE SMART CARD SOFTWARE DRIVER.................................................................................51 

5.3.1. SA swap policy ...........................................................................................................51 

5.3.2. Synchronization issues ...............................................................................................51 

5.3.3. Data structures...........................................................................................................52 

5.3.4. How the driver works .................................................................................................54 

5.3.5. How IPSec should interact with the driver ................................................................55 

6. The crypto-processor used on a router: study of the optimal SA cache dimension ...................57 

6.1. REFERENCE SYSTEM............................................................................................................57 

6.2. SIMULATION DATA ..............................................................................................................60 

6.3. NUMBER OF OPENED SA......................................................................................................61 

6.4. CACHE DIMENSION STUDY WITHOUT CONSIDERING THE CRYPTO-PROCESSOR DELAYS........68 

6.4.1. Space needed for the SAC ..........................................................................................68 

6.4.2. Designing the simulation............................................................................................69 

6.4.3. The simulation program.............................................................................................70 

6.4.4. The results of the simulations.....................................................................................74 

6.4.5. Reuse of each cache entry ..........................................................................................86 

6.4.6. Using a different cache replace policy.......................................................................89 

6.4.7. Taking into account the SA creation phase................................................................89 

6.4.8. Considering the SAs created as in “IKE Phase 2 – quick mode”..............................91 

6.5. SIMULATING THE DELAY INTRODUCED BY THE CRYPTO-PROCESSOR...................................93 

6.5.1. Computation of the delays..........................................................................................93 



 Table of Contents VII  
 

 

6.5.2. Designing the simulation............................................................................................98 

6.5.3. The simulation program.............................................................................................99 

6.5.4. The results of the simulations...................................................................................102 

6.5.5. Considering the behavior of IKE Phase 2 in quick mode ........................................112 

6.6. ADDING THE DELAYS DUE TO THE SA CREATION PHASE....................................................115 

6.6.1. Description of the delays introduced by the IPSec SA creation phase ....................115 

6.6.2. Conclusions about the SA creation delays ...............................................................120 

6.7. TECHNICAL DETAILS RELATED TO THE SIMULATIONS........................................................120 

6.8. CHOICHING THE OPTIMAL CACHE DIMENSION....................................................................121 

6.9. RESULTS VALIDATION .......................................................................................................121 

7. Conclusions ..............................................................................................................................123 

8. Possible future improvements of the system............................................................................124 

8.1. TESTING AND VERIFICATION OF THE SOFTWARE INTERFACE..............................................124 

8.2. FURTHER STUDIES ABOUT THE SA CACHE.........................................................................124 

Bibliography.....................................................................................................................................125 

Appendix A. The smart card interface code ..............................................................................128 

A.1. SC_DRIVER.H ....................................................................................................................128 

A.2. SC_DRIVER.CPP.................................................................................................................130 

Appendix B. Cache behavior simulation without delays...........................................................144 

Appendix C. Cache behavior simulation considering the crypto processor delays...................154 

Appendix D. Network timing evaluation...................................................................................164 



 List of figures VIII  
 

 

List of figures 

Figure 1.1: ESP in transport mode .......................................................................................................7 

Figure 1.2: ESP in tunnel mode ...........................................................................................................8 

Figure 1.3: AH in transport mode ........................................................................................................8 

Figure 1.4 AH in tunnel mode..............................................................................................................9 

Figure 1.5: IKE Phase 1 exchange .....................................................................................................10 

Figure 1.6: IKE Phase 2 “quick mode” exchange .............................................................................12 

Figure 1.7: creation of an IPSec SA with Pluto .................................................................................13 

Figure 2.1: representation of the considered system..........................................................................16 

Figure 2.2: VPN scenario – 2 clients connected on a VPN through Internet.....................................18 

Figure 2.3: Client connected to his company’s internal network in a secure way using Internet......19 

Figure 2.4: data tunneling between two gateways .............................................................................21 

Figure 5.1: UML class diagram of the system ...................................................................................49 

Figure 5.2: UML class diagram of the sC_driver class......................................................................50 

Figure 5.3: UML sequence diagram of the system ............................................................................50 

Figure 5.4: the scSlot structure...........................................................................................................53 

Figure 5.5: the saInfo structure ..........................................................................................................53 

Figure 5.6: the sc data structure .........................................................................................................54 

Figure 5.7: the saArray data structure................................................................................................54 

Figure 6.1: IPSec router reference system .........................................................................................58 

Figure 6.2: internal system representation .........................................................................................59 

Figure 6.3: first few lines of the data file ...........................................................................................60 

Figure 6.4: number of opened SAs over time ....................................................................................62 

Figure 6.5: SA creation distribution over 1s intervals .......................................................................63 

Figure 6.6: SA creation distribution over 1s intervals when a 30min. timeout is set on unused SAs64 

Figure 6.7: SA creation distribution over 1s intervals when the TCP FIN packets are used for 

closing the SAs...........................................................................................................................64 



 List of figures IX  
 

 

Figure 6.8: SA creation distribution over 1s intervals when a 30min. timeout on the unused SAs is 

set and the SA TCP FIN packets are used for closing the SAs..................................................65 

Figure 6.9: reuse of the SAs before being closed...............................................................................65 

Figure 6.10: reuse of the SAs before being closed when a 30min timeout on the unused SAs is set66 

Figure 6.11: reuse of the SAs before being closed using the TCP FIN packets for closing the SAs.66 

Figure 6.12: reuse of the SAs before being closed when a 30min timeout on the unused SAs is set 

and using the TCP FIN packets for closing the SAs..................................................................67 

Figure 6.13:SADel structure ...............................................................................................................71 

Figure 6.14: SACel structure ..............................................................................................................71 

Figure 6.15: SAD array definition ......................................................................................................71 

Figure 6.16: SAC array definition ......................................................................................................72 

Figure 6.17: the SAD array.................................................................................................................72 

Figure 6.18: the SAD array.................................................................................................................72 

Figure 6.19: dataT structure ...............................................................................................................72 

Figure 6.20: simulation results over time with a 64-entry cache .......................................................76 

Figure 6.21: simulation results over time with a 128-entry cache .....................................................77 

Figure 6.22: simulation results over time with a 256-entry cache .....................................................78 

Figure 6.23: simulation results over time with a 512-entry cache .....................................................78 

Figure 6.24: simulation results over time with a 64-entry cache, considering a 30min. timeout on the 

unused SAs.................................................................................................................................80 

Figure 6.25: simulation results over time with a 128-entry cache, considering a 30min. timeout on 

the unused SAs...........................................................................................................................81 

Figure 6.26: simulation results over time with a 256-entry cache, considering a 30min. timeout on 

the unused SAs...........................................................................................................................82 

Figure 6.27: simulation results over time with a 128-entry cache, using the TCP FIN packets for 

closing the SAs...........................................................................................................................83 

Figure 6.28: simulation results over time with a 256-entry cache, using the TCP FIN packets for 

closing the SAs...........................................................................................................................84 

Figure 6.29: simulation results over time with a 128-entry cache, when a 30min. timeout on the 

unused SAs is set and using the TCP FIN packets for closing the SAs.....................................85 



 List of figures X 
 

 

Figure 6.30: simulation results over time with a 256-entry cache, when a 30min. timeout on unused 

SAs is set and using the TCP FIN packets for closing the SAs .................................................86 

Figure 6.31: reuse of each cache entry before being discarded on a 128-entry cache .......................87 

Figure 6.32: reuse of each cache entry before being discarded on a 256-entry cache .......................88 

Figure 6.33: reuse of each cache entry before being discarded on a 128-entry cache, when a 30min. 

timeout on the unused SAs is set................................................................................................88 

Figure 6.34: simulation results over time with a 108-entry cache .....................................................90 

Figure 6.35: simulation results over time with a 236-entry cache .....................................................90 

Figure 6.36: SA creation distribution over 1s intervals when IKE Phase 2 quick mode procedure is 

used for opening the SAs ...........................................................................................................93 

Figure 6.37: the dataT structure .........................................................................................................99 

Figure 6.38: throughput obtained using a 64-entry cache and an AES hardware running at 50MHz

..................................................................................................................................................104 

Figure 6.39: throughput obtained using a 256-entry cache and an AES hardware running at 50MHz

..................................................................................................................................................105 

Figure 6.40: throughput obtained using a 64-entry cache and an AES hardware running at 55MHz

..................................................................................................................................................106 

Figure 6.41: throughput obtained using a 128-entry cache and an AES hardware running at 55MHz

..................................................................................................................................................106 

Figure 6.42: throughput obtained using a 256-entry cache and an AES hardware running at 55MHz

..................................................................................................................................................107 

Figure 6.43: throughput obtained using a 64-entry cache and an AES hardware running at 60MHz

..................................................................................................................................................108 

Figure 6.44: throughput obtained using a 128-entry cache and an AES hardware running at 60MHz

..................................................................................................................................................108 

Figure 6.45: throughput obtained using a 256-entry cache and an AES hardware running at 60MHz

..................................................................................................................................................109 

Figure 6.46: throughput obtained using a 64-entry cache and an AES hardware running at 70MHz

..................................................................................................................................................110 



 List of figures XI  
 

 

Figure 6.47: throughput obtained using a 128-entry cache and an AES hardware running at 70MHz

..................................................................................................................................................110 

Figure 6.48: throughput obtained using a 108-entry cache and an AES hardware running at 60MHz

..................................................................................................................................................112 

Figure 6.49: throughput obtained using a 128-entry cache and an AES hardware running at 60MHz 

– SA creation as in IKE Phase 2 Quick Mode..........................................................................113 

Figure 6.50: throughput obtained using a 256-entry cache and an AES hardware running at 60MHz 

– SA creation as in IKE Phase 2 Quick Mode..........................................................................114 

Figure 6.51: throughput obtained using a 108-entry cache and an AES hardware running at 60MHz 

– SA creation as in IKE Phase 2 Quick Mode..........................................................................114 

Figure 6.52: average reply time for each pair of peers.....................................................................117 

Figure 6.53: average reply time between each pair of peers with the part of the ordinate axe between 

0 and 3 magnified.....................................................................................................................118 

Figure 6.54: minimum reply time between each pair of peers.........................................................119 

Figure 6.55: maximum reply time between each pair of peers ........................................................119 

Figure 6.56: throughput obtained using a 128-entry cache and an AES hardware running at 60MHz 

with a different set of data........................................................................................................122 



 List of tables XII  
 

 

List of tables 

Table 3.1: IKE Phase 1 proposals for the “Road Warrior” network ordered by preference..............32 

Table 3.2: IKE Phase 2 proposals for the “Road Warrior” network ordered by preference..............33 

Table 4.1: table of the command provided by the smart cards for IPSec ..........................................42 

Table 4.2: table of the command provided by IPSec for the smart card ............................................43 

Table 4.3: error codes.........................................................................................................................44 

Table 4.4: A command format............................................................................................................44 

Table 4.5: B command format – header .............................................................................................45 

Table 4.6: B command format – data .................................................................................................45 

Table 4.7: C command format – header.............................................................................................45 

Table 4.8: C command format – data, 1st part ....................................................................................45 

Table 4.9: C command format – data, 2nd part ...................................................................................46 

Table 4.10: format table of the “IPSec to smart card” commands.....................................................46 

Table 4.11: format table of the “smart card to IPSec” commands.....................................................47 

Table 6.1: memory space needed in the SAC for each ISAKMP SA ................................................69 

Table 6.2: memory space needed in the SAC for each IPSec SA......................................................69 

Table 6.3: space needed for the SAC depending on the number of entry chosen..............................69 

Table 6.4: encryption timings for different AES hardware clock rates .............................................96 

 

 

 



 Abstract 1 
 

 

Abstract 

Security in a network environment is a very important requirement in many of the 

applications being developed today. This project’s objective is to study the software 

interface needed for using a smart-card-like crypto-processor on a system running the 

IPSec protocol. 

Security in such systems is becoming important as the use of smart cards is being 

increasingly adopted by the industry. In addition to that, with the increasing networking 

and openly interconnected environments, new dimensions are added to the security 

models. As the world head towards heterogeneous computing, security issues between 

different devices are becoming increasingly important. There need to be mechanisms in 

place to ensure that the transfer of information is carried out in a secure way. On the 

other side, an accurate study of the crypto-systems’ performance is needed to allow 

them supporting the performance required in modern network environments. 
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1. Introduction 

1.1. Why we do need security and cryptography 

In today’s world where our lives are becoming increasingly based on computers and 

information transmission, being able to store and transmit data in a secure way has 

became extremely important. E-commerce is a typical example of an application in 

which more security (data protection, authentication, and certification) is needed, but it 

is not the only one. For example we can think about the security issues in dealing with 

more common applications; such as, conversing on mobile, protecting sensitive 

information contained in medical smart cards, or simply sending confidential e-mails.  

In addiction, having increasing numbers of companies distributed all over the world, it 

has became exceedingly important to protect information sent between the various seat 

of the same company or, in other words, to create virtual private networks (VPN). 

So, what can cryptography do to solve these kinds of problems? Cryptography can be 

used to protect and authenticate data to allow them to be stored and/or transmitted in the 

securest way possible. 

With the advance of hardware in the last few years, it is becoming easier to break 

cryptographic codes generated by older encryption algorithms. A cryptographic code is 

said to be broken when someone is somehow able to read the information contained in it 

without being authorized (i.e. having the key in a legal way). Therefore new 

cryptographic algorithms have been developed taking into account their possible uses in 

emerging applications. Applications such as embedded systems like smart cards, cards  

where some memory and a processor are provided. This has added consequences in that 

these new algorithms should provide the possibility to run on low power and with high 

performance on small processors, while allowing a high level of data protection. 



Chapter 1 Introduction 3 
 

 

1.2. Cryptographic algorithms 

There are two kinds of cryptographic algorithms, the symmetric and the public key 

algorithms. The former ones are faster and very secure, but need to have a pre-shared 

secret key. The latter ones are slower but not less secure (if the right key-dimension is 

chosen) and do not need to have a pre-shared secret key. A brief description of the two 

algorithm classes and a presentation of the Diffie-Hellman protocol are discussed 

below. 

1.2.1. The symmetric key algorithms 

These types of algorithms work by using a pre-shared secret key; essentially, some 

transformations involving that key are applied to the data to be codified. Some different 

working patterns exist for these algorithms, based on the application for which they 

have to be used. For example there is the CBC mode that is suitable for applications in 

which big blocks of data must be transmitted [MOV, section 1.5]. 

The most widely used of this class of algorithms is triple-DES (Digital Encryption 

Standard), a variation of the old (1977) DES. A new cryptographic algorithm called 

AES (Advanced Encryption Standard) was selected from competing candidates by 

NSA, replacing the triple-DES.  In the near future AES will probably become the de-

facto standard, as triple-DES is currently. 

1.2.2. The public key algorithms 

These kinds of algorithms solve the problem of having a pre-shared key by using 

asymmetric cryptography techniques. Two keys for every peer are needed, one that is 

called private and that is known only by the owner, and another called public and 

known to everyone that wants to communicate with that subject. Some transformations, 

based on the public key, are applied to every communication directed to that subject. 

This makes the data inaccessible to everyone that does not have the private key. As a 

matter of fact the inverse transformations cannot be applied by only knowing the public 

key [MOV, section 1.8]. 
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Nowadays the most widely used algorithm of this class is RSA, but new algorithms, 

such as the ECC (Elliptic Curve Cryptography), have been developed and probably will 

become the dominating ones very soon. 

1.2.3. The Diffie-Hellman protocol 

Diffie-Hellman provides a solution to the key exchange problem by allowing two 

parties, never having met in advance or having shared keying material, to establish a 

shared key secret by exchanging messages over an open channel. The key is exchanged 

in the following way: 

• The first peer (A) chooses a random secret called x, does some operations on it 

and sends the result (h) to B; 

• The second peer (B) chooses a random secret called y, does some operations on 

it and sends the result (k) to A; 

• B receives h from A and computes the key using h and y 

• B receives k from B and computes the key using k and x 

The key protection is given by the fact that the operations performed on x and y to 

obtain h and k, needs a lot of computational time to be inverted so that eventual third 

parties discovering the values of h and k would not anyway be able to discover the 

key in a reasonable amount of time. 

The operations that can be applied to x and y to obtain h and k can be based either on 

elliptic curves or on exponentials in the discrete fields. The former case is based on 

the same principles of ECC, while the other  is based on RSA. 

See [MOV] on section 12.6 and [RHS] for more information about Diffie-Hellman 

and the key exchange procedures.  

1.3. Authentication algorithms 

These types of algorithms are used to certify that the information comes from a certain 

person and was not modified by someone else. This can be done by computing a hash 

function of the data and applying to that result an encryption algorithm (that can be a 

public or a symmetric key one) [MOV, section 1.7]. A hash function is one that, when 
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applied to some data, provides a different brief code for every different packet of data, 

or, at least provides equal codes for different data with a really low probability [MOV, 

section 1.9]. 

1.4. The IETF IPSec protocol suite 

IPSec is a protocol developed to provide secure communications on untrusted networks 

adding some security services to the ISO-OSI network level (i.e. to the IP protocol 

layer) [RFC-2401]. It is also the Internet Engineering Task Force (IETF) proposed 

standard for “layer 3 real-time communication security.” IPSec can be thought of as a 

protocol that operates on top of Layer 3 (IP) but below layer 4 (TCP). This infers that it 

encrypts data independently of all others. If packets happen to be lost, the layer 4 sees 

only validated information [IEEE-1]. 

IPSec proposes three different security protocols:  

• Authentication Header (AH); 

• Encapsulating Security Payload (ESP); 

• Internet Key Exchange (IKE).  

The first is used to protect the IP headers, while the second is for protecting the content 

of the IP datagrams. The third protocol is used to perform the key exchange and the 

algorithm negotiation. The first two protocols can be combined in different ways to 

offer different levels of security services according to the established system’s security 

policy.  

The main method used for AH is applying an authentication algorithm on all the 

header’s fields that are not changed during the packet transmission1. HMAC-MD5 and 

HMAC-SHA1 are the two alternatives proposed [RFC-2402] [RFC-2406] as minimum 

requirements for IPSec conformance, but new authentication algorithm such as HMAC-

SHA-256, HMAC-SHA-348, and HMAC-SHA-512 [DRAFT-4] are under 

                                                 
1 Some IP headers’ fields are often changed when the datagrams go through different gateways before 

reaching their final destination. 
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development. In addition, there is another required-to-implement authentication 

algorithm that is the NULL algorithm: an algorithm that does nothing. 

The ESP protocol is implemented by applying an encryption algorithm on the data to be 

transmitted, but not on the IP header (except from the case of IPSec tunneling, as 

explained later on in this paragraph). The required-to-implement algorithms for IPSec 

compliant implementations are triple DES and the NULL algorithm, but, since IPSec 

was designed with flexibility and extendibility in mind, other encryption methods, such 

as AES, can be added. 

Both in AH and ESP a simple and efficient anti-reply mechanism is provided: a 

monotonically increasing 32-bit counter is used to implement this feature [RFC-2406]. 

Anti-reply is a process in which if someone were to intercept one of the packets 

exchanged by the two peers that are communicating, he could not use that packet to 

reply to one of the two peers to obtain reserved information (such as the symmetric key) 

– he would need to know the value of a field that is cryptographically encoded. Anti-

reply is also called “partial sequence integrity”. 

So, to summarize: 

• AH provides connectionless integrity, data origin authentication, and optional 

anti-replying service; 

• ESP may provide confidentiality (using encryption) and may also provide 

connectionless integrity, data origin authentication, and anti-reply service if used 

in tunnel mode as explained later on in this document. 

1.4.1. The concept of IPSec Security Association 

An association in which either the AH or the ESP protocol (but not both) is used to 

communicate, is called IPSec Security Association (IPSec SA). The suffix “IPSec” is 

used to distinguish that kind of SAs from the Internet Security Association Key 

Management Protocol (ISAKMP) SAs that can be used only for key exchanging and 

algorithm negotiation. In this document, unless specified, all the SA-word occurrences 

will be related to IPSec SAs. 
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An IPSec Security Association is a one-way association between two peers, so, in order 

to have a bi-directional communication channel, the creation of two SAs is needed. 

For providing particular protection services, multiple SAs can be employed; this is 

called a “SA bundle”. The order of the SA sequence is defined by the security policy, 

therefore if both AH and ESP are needed it will be necessary to create two SAs, one for 

AH and the other for ESP, so that these two SAs will be “nested” as required by the 

security policy.  

We can note that, since a strong enough encryption algorithm is used, using ESP can 

offer the maximum level of protection available (see the ESP tunnel mode in the next 

section), so that nesting AH and ESP SAs seems unnecessary. As a matter of fact, AH is 

often seen as an additional, but not useful complication added to IPSec ([IEEE-1], 

[IEEE-2]). From what is stated in the IPSec RFCs, the AH protocol seems to have been 

kept for backward compatibility purposes. 

1.4.2. The Transport and the Tunnel modes 

Both tunnel and transport mode can be coupled with the AH or with the ESP protocol. 

The use of tunnel mode allows the inner IP header to be protected, concealing the 

identities of the (ultimate) traffic source and destination. ESP padding can also be 

invoked to hide the real packet’s size.  

The Transport mode provides protection only for the upper layer protocols. Hence, by 

using ESP, the IP header won’t be protected, while using AH only some selected IP 

header fields will be protected. As shown in Figure 1.1, the ESP transport mode protects 

the datagram’s data payload, while ESP tunnel mode protects both the IP headers and 

the data payload as shown in Figure 1.2. 

 
 

IP payload IP Header IP payload IP Header IP encrypted payload IP Header 

IP payload IP Header 

 

Figure 1.1: ESP in transport mode 
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Header 

IP payload IP Header 

IP payload IP Header 

 

Figure 1.2: ESP in tunnel mode 

In the same manner, Figure 1.3 shows the behavior of the AH protocol in transport 

mode: the IP header is the only protected (hashed) part there. In Figure 1.4 the behavior 

of the AH protocol in tunnel mode is displayed: there, both the IP header and the 

payload are protected (hashed). In both the figures the AH field represents the part 

added by the AH protocol (hash, SPI, …). 

In the four figures shown here, the parts colored in black are the ones protected by 

cryptography or hashing; in AH the IP headers are never completely protected (i.e. 

some fields are not hashed, as explained before). All four figures are referred to IPSec 

used in combination with IP v.4. Slightly different figures can be drawn for IP v.6, since 

its structure allows a better IPSec integration. The effects obtained using tunnel and 

transport modes are exactly the same for both IP v.4 and IP v.6. The four figures shown 

here are only a simplified view of the IP datagrams used for IPSec. More detailed 

information about the IPSec modes and the exact composition of the datagrams can be 

found in [RFC-2402] and in [RFC-2407]. 
 

IP payload IP Header AH 

IP payload IP Header 

 

Figure 1.3: AH in transport mode 
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IP Header 

new IP Header 
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Figure 1.4 AH in tunnel mode 

The (ESP) tunnel mode was primarily thought for being used in gateways or routers.  

1.4.3. IKE: the key exchanging and the algorithm negotiation mechanisms 

As stated before, a mechanism for symmetric key exchange and for algorithm 

negotiation is needed. It is important to note that the keys have to be exchanged in a 

secure way while the algorithm negotiation can be done in a non-protected way, which 

is the fundamental principle of cryptography (the strength of a cryptography algorithm 

is not given by hiding the algorithm itself, but by hiding the key). There is also a 

provision for protected negotiation in order to hide the identity of the peers or some 

other private information. 

All mechanisms related to the creation of an IPSec SA must be done at the application 

layer and are described by the Internet Key Exchange (IKE) protocol. IKE is the 

interpretation of the Internet Security Association And Key Management Protocol 

(ISAKMP) in the IPSec domain. Therefore IKE is said to be the Domain of 

Interpretation (DoI) of ISAKMP. ISAKMP is a protocol describing how key exchange 

and algorithm negotiation is done over the Internet network. 

The creation of an IPSec SA is completed in two phases, first an ISAKMP SA between 

the two peers is created (phase 1), and then that ISAKMP SA is used to negotiate the 

information about the IPSec SAs that have to be created (phase 2) [RFC-2409]. 

ISAKMP SAs are nothing more than a kind of secure tunnel for the creation of IPSec 

SAs.  
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Initiator Responder ISAKMP phase 1 header + SA negotiation 
payload 

ISAKMP phase 1 header + SA negotiation 
payload 

ISAKMP header + Key exchange payload 
[+ hash] + initiatior ID and NONCE payload 
encrypted w ith the receiver public key 

ISAKMP phase 1 header + Key exchange 
payload [+ hash] + responder ID and 
NONCE payload encrypted w ith the initiator 
public key 

ISAKMP phase 1 header encrypted w ith the 
symmetric key + hash of the header using 
the symmetric key 

ISAKMP phase 1 header encrypted w ith 
the symmetric key + hash of the header 
using the symmetric key 

 

Figure 1.5: IKE Phase 1 exchange 

IKE provides several methods for the phase 1 negotiation with different levels of 

protection. The key exchange mechanism is based on the Diffie-Hellman algorithm. In 

Figure 1.5, one of the phase 1 negotiation method is shown: here a public key 

encryption algorithm is used for authentication, while the secure channel for the phase 2 

is created during the second message exchange between the two peers, by using a 

symmetric encryption algorithm. The algorithms to be used are negotiated during the 
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first message exchange between the initiator2 and the responder: first the initiator sends, 

using the SA negotiation payload field, several complete algorithm proposals as defined 

by the system security policy, and then the responder puts the only proposal that it could 

accept in conformance with its security policy database (see section 1.4.4) into the same 

field of its reply message. 

A phase 2 “quick mode” exchange is shown in Figure 1.6. The phase 2 accomplishes 

the creation of a pair of independent SAs, one for each communication direction. A new 

pair of IPSec SAs is created by exchanging only three messages: 1) the Initiator 

requests a new pair of IPSec SAs proposing the encryption and authentication 

algorithms for use in each of those SAs payload, 2) the Responder may accept one of 

the initiator’s proposals by always using the SA payload field, and 3) the Initiator 

confirms the creation of the two IPSec SAs. The last message exchange is done in a 

symmetric encrypted form using the recently exchanged key. After that message, the 

two peers are able to communicate through the two secure (unidirectional) channels 

created during that negotiation. The Initiator of phase 2 can be any of the two peers 

irrespective of which of the two was the Initiator during the phase 1. 

                                                 
2 The initiator is the peer that propose to start an ISAKMP SA negotiation, while the other peer is called 

“responder” 
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Initiator Responder 

ISAKMP phase 2 header encrypted w ith 
ISAKMP symmetric key+ hash + SA 
negotiation payload + Nonce + key echange 
payload 

ISAKMP phase 2 header encrypted w ith 
ISAKMP symmetric key+ hash + SA 
negotiation payload + Nonce + key echange 
payload 

ISAKMP phase 2 header encrypted w ith 
ISAKMP symmetric key+ has h 

 

Figure 1.6: IKE Phase 2 “quick mode” exchange 

Figure 1.7 shows the creation of an IPSec SA using the standard triple-DES and RSA 

algorithms. The first part of the figure represents the phase 1 negotiation, i.e. the 

creation of an ISAKMP SA, while the second part shows the IKE phase 2, i.e. the 

creation of an IPSec SA. This SA creation sequence is taken from the log file created by 

the FreeS/Wan IKE – IPSec implementation while it is running. The channel was 

created between two PCs in the ALaRI lab. FreeS/Wan is a reference IPSec 

implementation [FSWAN] we used to verify our understanding of the IPSec RFCs. 
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Apr 24 16:38:57 alari011 Pluto[565]: "affsts" #8: initiating Main Mode 

Apr 24 16:38:57 alari011 Pluto[565]: | sending: 

Apr 24 16:38:57 alari011 Pluto[565]: |   90 de 64 6 c  77 45 48 2c  00 00 00 00  00 00 00 00 

………… 

Apr 24 16:38:57 alari011 Pluto[565]: | ICOOKIE:  90  de 64 6c  77 45 48 2c 

Apr 24 16:38:57 alari011 Pluto[565]: | RCOOKIE:  94  5c 12 c3  94 74 a4 68 

Apr 24 16:38:57 alari011 Pluto[565]: | peer:  c3 b0  b6 92 

Apr 24 16:38:57 alari011 Pluto[565]: | sending: 

Apr 24 16:38:57 alari011 Pluto[565]: |   90 de 64 6 c  77 45 48 2c  94 5c 12 c3  94 74 a4 68 

………… 

Apr 24 16:38:57 alari011 Pluto[565]: | *received 18 0 bytes from 195.176.182.146:500 on eth0 

Apr 24 16:38:57 alari011 Pluto[565]: |   90 de 64 6 c  77 45 48 2c  94 5c 12 c3  94 74 a4 68 

………… 

Apr 24 16:38:57 alari011 Pluto[565]: | encrypting: 

Apr 24 16:38:57 alari011 Pluto[565]: |   09 00 00 0 c  01 00 00 00  c3 b0 b6 90  00 00 01 04 

………… 

Apr 24 16:38:57 alari011 Pluto[565]: | sending: 

Apr 24 16:38:57 alari011 Pluto[565]: |   90 de 64 6 c  77 45 48 2c  94 5c 12 c3  94 74 a4 68 

………… 

Apr 24 16:38:57 alari011 Pluto[565]: | *received 30 0 bytes from 195.176.182.146:500 on eth0 

Apr 24 16:38:57 alari011 Pluto[565]: |   90 de 64 6 c  77 45 48 2c  94 5c 12 c3  94 74 a4 68 

………… 

Apr 24 16:38:57 alari011 Pluto[565]: "affsts" #8: S TATE_MAIN_I4:  ISAKMP SA established 

………… 

Apr 24 16:38:58 alari011 Pluto[565]: "affsts" #9: initiating Quick Mode 

RSASIG+ENCRYPT+TUNNEL+PFS 

Apr 24 16:38:58 alari011 Pluto[565]: | encrypting: 

Apr 24 16:38:58 alari011 Pluto[565]: |   01 00 00 1 8  af 7c 6e a8  19 9c 3d 3e  5d 50 9f f7 

………… 

Apr 24 16:38:58 alari011 Pluto[565]: | sending: 

Apr 24 16:38:58 alari011 Pluto[565]: |   90 de 64 6 c  77 45 48 2c  94 5c 12 c3  94 74 a4 68 

………… 

Apr 24 16:38:58 alari011 Pluto[565]: | *received 26 0 bytes from 195.176.182.146:500 on eth0 

Apr 24 16:38:58 alari011 Pluto[565]: |   90 de 64 6 c  77 45 48 2c  94 5c 12 c3  94 74 a4 68 

………… 

Apr 24 16:38:58 alari011 Pluto[565]: | encrypting: 

Apr 24 16:38:59 alari011 Pluto[565]: |   00 00 00 1 8  b6 d0 c2 c8  c1 e7 b3 65  0f 2b b9 31 

Apr 24 16:38:59 alari011 Pluto[565]: |   87 f8 f6 b c  d4 cc 6c 9b 

Apr 24 16:38:59 alari011 Pluto[565]: | sending: 

Apr 24 16:38:59 alari011 Pluto[565]: |   90 de 64 6 c  77 45 48 2c  94 5c 12 c3  94 74 a4 68 

………… 

Apr 24 16:38:59 alari011 Pluto[565]: "affsts" #9: S TATE_QUICK_I2: sent QI2, IPsec SA established 

Figure 1.7: creation of an IPSec SA with Pluto 

Also note that the KEY exchange can be done in a manual or in an automatic mode. The 

former consists of manually requesting a new key and should be used only on few 

occasions, for example during testing or in a very small VPN. The latter consists of 

automatically updating the keys when a 32-bit counter that is incremented every time 
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the SA is used, reached its maximum; this is the mode that offers more reliability and 

security. 

1.4.4. The Security Policy Database (SPD) 

The Security Policy Database specifies what services are to be offered to each possible 

pair basing on its IP address and in what fashion [RFC-2401, section 4.4.1], so the SPD 

will contain a list of IP address with the corresponding security policies to be adopted. 

The SPD must be consulted during the processing of all traffic, including non-IPSec 

traffic. 

1.4.5. The Security Association Database (SAD) 

The Security Association Database is a database in which stores all the information 

related to each opened SA [RFC-2401, section 4.4.3]. Each of them has to be univocally 

identified by the destination IP address, the IPSec protocol type, and the SPI, a 32-bit 

value used to distinguish among different SAs terminating at the same destination and 

using the same IPSec protocol. 

1.4.6. Adding AES to IPSec 

As there were no stable publicly available documents from the Internet Engineering 

Task Force  (IETF) about this aspect of the project, our work is based on draft 

documents ([DRAFT-2] and [DRAFT-3]) and thus may have some interoperability 

problems with different IPSec (and IKE) implementations. This is due to the fact that in 

some cases we were forced to make certain specific choices not supported by any 

official documentation (see chapter 3). 

1.4.7. Some notes about the available IPSec – IKE documentation 

The (many) available RFCs are sometimes confusing giving the possibility of 

misunderstandings and different interpretations. This could cause interoperability 

problems as explained in a NIST document [NIST-1]. 
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IKE is really complex to cover a high number of different use cases, and this causes 

some interpretation difficulties [IEEE-1]. 

1.5. Network attacks 

Here a brief explanation of some kinds of computer attack is given. More detailed 

information can be found for example in [COM-1]. 

Network attacks are actions performed to take the control of a system (or a sub-

network), to extract data from that system, or to make the system unusable. Network 

attacks are of increasing concern because of the number of organizations and users on 

the Internet and their increasing dependency on the Internet to carry out day-to-day 

business. 

Network attacks can be done in many ways, often following some known procedures. 

A very common kind of attack is the one called Denial of Service (DoS): here multiple 

systems are used to attack one or more victim systems. The goal of that kind of attack is 

to saturate the resources of the victim systems. 

Other attacks can be specifically studied for routers: intruders can use poorly secured 

routers as platforms for generating attack traffic at other sites; routers can easily become 

victims of DoS attacks being designed to pass a large amount of data through them, but 

without the capability to handle the same amount of traffic directed to them. 

There are also systems called “intrusion detection” systems: these are merely software 

developed to detect known operational patterns applied on the network. Usually once an 

attack has been discovered, intrusion detection systems deny these operation to continue 

and also advise the system administrator. The main problems associated with these 

types of software are due to the fact that new attack techniques are very often 

discovered, so that not all the attacks are recognized. On the other hand, these types of 

software can easily recognize some normal (non-malicious) operations performed on the 

system as attacks.  
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2. Descript ion of the global system 

The system under development in the ALaRI lab is composed of a smart card (or, more 

generally speaking, a crypto-processor) implementing some security functionality as 

described in section 2.1, and a host on which IPSec and IKE are installed and running. 

The system has to be able to support communications at 50Mbit/s. This system is 

connected to a network (i.e. Internet) and has to be able to communicate with other 

IPSec compliant systems that possibly support AES and ECC as described in section 2.3 

See Figure 2.1 for a graphical representation of the system. 

Applications

IKE

IPSec

S/C reader

 

Figure 2.1: representation of the considered system 

2.1. The hardware 

The host on which IPSec and IKE are running can either be a PC or a different kind of 

machine (for example a gateway or a firewall), depending on the specific application of 

the system. 
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The smart card hardware interface is undefined and outside the scope of the project. It is 

assumed that the data transmission rate of the interface is enough to support the 

50Mbit/s throughput. 

The smart card must provide encryption and decryption of data packets using the 

symmetric AES algorithm and the public key ECC algorithm respectively, in addition to 

other services needed for the security associations’ management. The key point is that 

both the symmetric and the private key of the public key cryptography algorithm should 

never exit from the smart card. Depending on the user scenario, it may not be necessary 

to hide both keys. In section 2.3 examples are provided as to how this feature can be 

used. 

The protection of the keys is the main motivation that makes it necessary to implement 

the cryptographic algorithms in the smart card. 

Slightly different requirements will be considered in chapter 6. 

2.2. The software 

The software running on the host consists of an implementation of the IKE protocol for 

key exchange and an implementation of the IPSec protocol. Both of these should be 

suited to take advantage of the smart card’s functionality. 

2.3. System usage scenarios 

The system can be used in many different ways. One way that the smart card associated 

with IPSec can be used is to create various kinds of Virtual Private Networks (VPN) or 

to create a secure communication channel between two gateways. A VPN is a private 

network created over a public network (e.g. internet) using some security systems to 

provide confidentiality and authentication. Here follows the description of some of 

these systems.  
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2.3.1. The simplest VPN scenario: two users communicating through 

Internet 

Applications

IKE

IPSec

Applications

IKE

IPSec

Applications

IKE

IPSec

Applications

IKE

IPSec

Applications

IKE

IPSec

Applications

IKE

IPSec

Internet

Virtual secure channel between 
the two PCs

 

Figure 2.2: VPN scenario – 2 clients connected on a VPN through Internet 

In this scenario a secure communication channel between two peers is established over 

an untrusted network like the Internet. The channel is called “virtual” because the 

Internet connectionless standard is still used, so no real permanent communication 

channel is provided. 

In Figure 2.2, two PCs are represented but these can be substituted with other kinds of 

machines such as embedded systems, mobile devices, handheld devices, etc. 

In this scenario the main use of the smart card is to provide authentication of the two 

users, so it is important that the ECC private key is stored in a protected manner in the 

smart card. This service is already provided by smart cards currently available on the 
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market, but in these systems the private key has to exit from the smart card because the 

cryptography algorithms are not contained there. The smart card also provides other 

services such as symmetric encryption and authentication. 

2.3.2. A more complex VPN scenario: a mobile user connected to his 

company’s network through Internet 

Applications

IKE

IPSec

Applications

IKE

IPSec

Applications

IKE

IPSec

Internet

Virtual secure 
channel

Firewall

IKE

IPSec

Company’s LAN

 

Figure 2.3: Client connected to his company’s internal network in a secure way using Internet 

As shown in Figure 2.3, the user is connected to the company’s internal network via the 

Internet; this scenario is often called “road warrior”. The company’s LAN is protected 

by a firewall. In this case the use of such a system allows both users authentication and 

secure communication. Here the user is reliably connected to the company’s LAN as if 
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he was physically connected to the company’s LAN3. In this case the secure channel is 

opened between the user’s PC (or other kind of machine) and the firewall. 

Here the smart card provides authentication when used on the PC side, and both 

authentication and data protection when used on the firewall side, so in this case it is 

important that both keys are kept secret. 

Figure 2.4 shows that more than one smart card can (and should) be used at the firewall 

side to provide better performance. The smart card can also be substituted by a similar, 

but more powerful, crypto-processor, to create even better performance than the smart 

card alone as shown in chapter 6. Later in this document it is shown that network 

configurations such as the one here illustrated can expose the system to DoS attacks, if 

not carefully configured. 

                                                 
3 This is not totally true: cryptography is only able to provide a certain level of security, depending on the 

adopted algorithm and on the key size, but it cannot guarantee, as any other protection mechanism, the 

total security of the data. 
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2.3.3. Data tunneling between two gateways 

Virtual secure 
channel

Gateway

IKE

IPSec

Gateway

IKE

IPSec

Gateway

IKE

IPSec

Gateway

IKE

IPSec

Untrusted 
network

subnetworks

subnetworks

 

Figure 2.4: data tunneling between two gateways 

In this case a secure channel is created to protect data transmitted between the two 

gateways, enabling multiple secure communications from different sub-networks at one 

time.   

In this scenario, the most important service provided by the smart card is data 

encryption. 

On gateways as well as on firewalls multiple smart cards could and should be used to 

enhance performance, or, as in the previous case, a crypto-processor can be utilized 

even more effectively than just the smart card. 
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3. The securi ty pol icy 

Before start working on the design of a security system, it is necessary to specify the 

level of security we need. This section, where the desired system’s behavior is 

described, accomplishes that needing. 

In the following subsection we describe the algorithms to be used during the key 

negotiation and during the communications, and how to use these algorithms. The key 

exchange mechanisms, and the support that the smart card should provide for IKE and 

IPSec are also discussed. 

Since security is highly connected with the system’s performance, some consideration 

about the latter topic are also provided in this part of the present document. 

3.1. The key Exchange mechanism: creation of SAs 

To create a pair of mono-directional IPSEC SAs (see the section 3.1.2 for further details 

about this), the following steps are needed ([RFC-2409], section 8): 

• Phase1 : do a main mode exchange to create an ISAKMP SA 

• Phase 2: do a quick mode exchange to establish the needed IPSec SAs (at least 2 

mono-directional) (phase 2) 

• delete the ISAKMP SA and its associated states. 

3.1.1. Phase 1 Key exchange – ISAKMP SA 

IKE Phase 1 creates a security channel to exchange SA information. This channel 

consist of a special bi-directional SA that is called ISAKMP SA. That security 

association is used only for creating new mono directional IPSec SAs and eventually it 

can be deleted. The maximum lifetime for an ISAKMP SA is of 24 hours. 

According to [RFC-2408] and [RFC-2409], the key exchange policy has to be re-

negotiated every time a new ISAKMP SA has to be established («The following 
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attributes are used by IKE and are negotiated as part of the ISAKMP Security 

Association. […] 

encryption algorithm 

hash algorithm 

authentication method 

information about a group over which to do Diffie-Hellman. 

All of these attributes are mandatory and MUST be negotiated. In addition, it is 

possible to optionally negotiate a pseudo-random function ("prf").»). 

The versions of Phase 1 negotiation techniques based on public key encryption (e.g. 

Phase 1 authenticated with Public Key encryption) will be implemented in our system 

through Elliptic Curve Cryptography (ECC). 

The section of RFC 2409 quoted above and interpreted in our context means that each 

time it is necessary to exchange an ISAKMP key (that is to create a new ISAKMP SA), 

the tables related to a specific ECC curve have to be re-computed. This is necessary 

unless the curve’s parameters used during the previous ECC-based computation are the 

same as the one to be used for the new one. 

We can also note that, once an ISAKMP SA has been created, we can use it for the 

creation of many other IPSec SAs by repeating IKE phase 2. As a matter of fact the 

PFS4 mechanism ensures that the generated keys are independent. Therefore very few 

ECC encryption/decryption operations may be really needed (see [RFC-2409], section 

5.5).  

The ECC curve information are used in all the ECC based key exchanges, that is at least 

one time for each phase 1 negotiation and sometimes in phase 2. 

According to [RFC-2408] section 4.3, security association modification within IKE is 

accomplished by creating a new SA and initiating communications using that new SA. 

Deletion of the old SA can be done anytime after the new SA is established.  

Modification of an ISAKMP SA follows the same procedure as deletion of an ISAKMP 

SA. 

                                                 
4 Perfect Forward Secrecy 
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According to [DRAFT-1] we have thirteen possible default groups for elliptic curve 

Diffie-Hellman that must  be supported.  

3.1.1.1. Phase 1 Key exchange procedure: 

According to [RFC-2409] section 5, the following key exchange procedures are used: 

• Phase 1 Authenticated With Signatures 

• Phase 1 Authenticated With Public Key Encryption 

o Main mode 

o Aggressive mode 

• Phase 1 Authenticated With a Revised Mode of Public Key Encryption 

• Phase 1 Authenticated With a Pre-Shared Key 

3.1.2. Phase 2 key exchange – IPSEC (AH-ESP) SA 

The phase 2 ([RFC-2409], section 5.5) is used to exchange keys for IPSec sessions 

when an ISAKMP SA has already been created.  

According to [RFC-2401] section 4.1, a SA is unidirectional. This means that to 

establish a standard bi-directional connection, two SAs have to be created. 

If both the AH and the ESP protocols are applied to a traffic stream, two SAs (for each 

direction) will be created. Those SAs will be nested as specified in the security policy 

database. 

In our system the IPSec SAs use the fast symmetric key encryption algorithm called 

AES for protecting the data. To prevent AES context switching inside the smart card 

(interleaving data blocks belonging to different SAs), the IPSec process on the host 

should send consecutive data blocks related to a single SA. This is recommended for 

optimizing the performance of the system, since AES works best on continuous streams 

of data. 

Modification of an IPSec SA (phase 2 negotiation) follows the same procedure as the 

creation of a new IPSec SA, that is: a new SA is opened, traffic is moved on it and the 

old SA is deleted. The creation of the new SA is protected by the existing ISAKMP SA, 

so that there is no relationship between the old and the new IPSec SAs.  A protocol 
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implementation should begin using the newly created SA for outbound traffic and 

continue to support incoming traffic on the old SA until it is deleted or until traffic is 

received under the protection of the newly created SA. 

3.1.2.1. Phase 2 key exchange mode: the quick mode 

There are two possible implementation of the quick mode to be supported (see [RFC-

2409], section 5.5): the base and the normal one.  In our system we will always propose 

to use the phase 2 normal mode, which guarantees the Perfect Forward Secrecy of the 

exchanged keys (if someone discovered the AES key used for communicating the new 

keys information, he would not be able to discover the latter). 

Using the quick mode, two mono-directional SAs are created, one for each end and the 

keys are derived from the information sent by the other peer. 

3.2. Algorithms 

IPSec RFCs state some required-to-implement algorithms for IPSec compliant 

implementations. As stated in section 2.1, our crypto-processor will not support the 

RSA and DES algorithms, while it will support the AES and ECC ones. For 

compatibility purposes, RSA and ECC will anyway have to be supported by software. 

3.2.1. Public Key Elliptic Curve Criptography 

For the ECC algorithm it is needed to support key-sizes up to 600 bits (NIST 

recommendation). 

3.2.2. Simmetric Key AES (Rijndael) Criptography 

In the early draft about the use of AES in IPSec [DRAFT-2], it was only required to 

support 128 bit-wide keys in CBC mode. In the new version of that draft ([DRAFT-3]) 

it is stated that both the key dimension and the number of algorithm rounds to be 

performed have to be negotiated. It is still not clear what fields of the IKE phase 1 and 

phase 2 are to be used for those negotiations. 
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3.2.3. Hash Algorithms  

The mandatory to support hash algorithms are MD5 and SHA-1 ([RFC-2402], [RFC-

2406], [RFC-2408]). 

3.2.4. Authentication Algorithms (HMAC) 

The mandatory to support authentication algorithms are HMAC-MD5 and HMAC-

SHA-1 ([RFC-2402], [RFC-2406], [RFC-2408]); these two HMAC algorithms require 

the knowledge of the symmetric key, therefore they have to be implemented in the 

smart card. 

Those authentication algorithms operate on entire packets of data: it should be 

investigated if block or stream implementations are possible. 

3.2.5. Algorithm negotiation 

During the SA negotiation, the encryption and authentication algorithms have to be 

agreed between the two peers. The initiator has to send some complete proposals (e.g. 

AES with HMAC-MD5), and the responder can accept one of them or propose a new 

one. 

In our system a symmetric key for a SA (AES key) can only be exchanged using the 

ECC based Diffie-Hellman algorithm. This is the only method allowed by the smart 

card. As a matter of fact the key cannot be introduced in any other ways without 

exposing the card to security attacks. 

Consequently it will not be allowed to use the ECC based Diffie-Hellman algorithm 

(and the ECC algorithm) to exchange secrets that are not AES symmetric keys: it would 

be possible to generate such a key, but not to retrieve it from the smart card. 

According to the previous statements, when the initiator proposes the use of ECC for 

key exchanging, it will be able to continue the negotiation only if the responder has the 

AES algorithm available; if not, the negotiation has to be closed and restarted using a 

public key algorithm different from ECC (e.g. RSA).  

The system acting as a responder will be able to accept only proposals corresponding to 

the previous conditions. Therefore it will be able to exchange an AES key only using 
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ECC and it will not be able to use ECC for other purposes. If the ECC algorithm is 

proposed for key exchanging but the initiator doesn’t have AES available, the 

negotiation will be closed, or the null cryptographic algorithm accepted. 

The curve parameters for ECC are to be negotiated as indicated in [DRAFT-1]. 

3.3. Support for a conceptually infinite number of SAs 

Due to the fact that the AES keys are never to go out from the smart card, some 

information, such as the keys, would have to be stored in a local memory and kept there 

for all the SAs lifetime. As we know, the amount of memory we can put in a smart card 

(or in a crypto-processor) is really limited so that it is not possible to store there all the 

information we need. A solution to that problem is discussed in this section.  

3.3.1. Smart card SA database 

The number of SAs that the smart card can handle at a given time has an upper bound 

due to the limited amount of memory in the smart card itself. Once this limit has been 

reached, it is necessary to free some smart card’s memory before creating new SAs. 

This can be done storing outside the data related to an active SA (for example the least 

recently used one) in a protected form (since the SA symmetric key has to be kept 

secret). 

This mechanism is very similar to the “paging” technique applied in systems with 

virtual memory or to the replacement technique of cache memories: the main difference 

with respect to them is that the information stored out of the local memory must be 

protected in some way. 

The data stored out of the smart card are saved in the host memory. 

The swapping between the smart card and the host computer introduces a further data 

processing delay, but it gives the smart card access to the host memory and allows a 

conceptually unlimited number of opened SAs.  

It is up to the IPSec/smart-card interface to manage that possibility in the best way, that 

is managing the SAs inside the smart card and freeing some memory position when 
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needed. To reach the maximum efficiency of the system, the SAs to be taken in the 

smart card’s memory can be chosen taking into account the following remarks: 

• the system administrator should set a limit to the number of SAs using the smart 

card, and assign a priority to them; 

• the interface between the IPSec implementation and smart the card should 

monitor the SA traffic in order to keep the most used SAs inside the smart card; 

• the number SAs opened at the same time should be carefully monitored to 

prevent DoS attacks. As a matter of fact allowing too many opened SAs can 

cause the system to spend more time swapping information between the smart 

card and the host than doing useful processing (i.e. data encryption/decryption). 

On the other side the smart card has to provide to the host all the functionality needed 

for managing the SAs.  

The SAs present in the smart card should be stored in a SA database (for example of 16 

entries) addressable by an index: the IPSec host has to include it in each service request 

sent to the smart card. 

To summarize, an entry in the smart card database is needed for each SA that has been 

created. That database will be kept in a non-accessible dedicated memory area of the 

smart card. When the smart card memory is full, the information related to an existing 

SA need to be stored in the host memory to allow the creation of a new SA. The 

information to be stored in the host memory, are to be protected through encryption.  

When an already created SA needs to be restored in the smart card, the host will pass 

the encrypted information to the smart card. Then the smart card will perform a data 

integrity check (e.g. through a simple CRC computation), and will store back the 

decrypted information in a specified position of the SA database. 

The details about the algorithms to be used for implementing the data storage described 

above are given in the following subsection. 

3.3.2. AES session key 

To protect the SA information that have to be stored outside the smart card, AES 

encryption can be performed. For that purpose an AES “session” key known only by the 
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smart card can be used. The AES session key must be newly generated each time the 

smart card is plugged in the reader.  

For obtaining the maximum possible level of security, a 256-bit wide AES key can be 

used. 

Looking at the contents of the smart card SA-database records, we can see that the only 

field that really needs to be protected is the one containing the AES key. For 

authenticating the data contained in each smart card SA-database entry, a simple 16-bit 

CRC computation seems to be enough. As a matter of fact, we only need a consistency 

checking on the stored information and CRC can provide that service allowing very fast 

and simple hardware implementations. The result of the CRC computation can be 

encrypted together with the AES key. 

To summarize, when an entry of the smart card SA-database needs to be stored in the 

host memory, first the CRC on the whole entry is computed, then the AES key and the 

CRC result are encrypted using the AES session key. At the end the encrypted SA-data 

and the other fields contained in the smart card SA-database entry (i.e. the IV and the 

AES algorithm settings for that SA) are stored out. 

To understand the level of security provided by this solution, we have to take into 

account that: 

• what is stored in encrypted form outside the smart card is, basically, the 

symmetric key that protects one SA; 

• when the IPSec automatic key-refresh service (anti-reply service) is active, the 

lifetime of each SA cannot in any case exceed either 8 hours or a specified 

amount of exchanged data (232 datagrams); 

• when the key-refresh is manually performed – and that this procedure is usable 

only in very little VPNs – the smart card will be probably able to carry all the 

opened SAs in its memory. Only few of the opened SAs will possibly be stored 

on the host for a small time. 

The AES robustness should anyway guarantee that the keys are protected “as they were 

kept in the smart card”. We can note that it would be more convenient for an attacker to 
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try breaking the AES key related to the SA in which he is interested than the session 

key, since the keys used for IPSec SAs are usually smaller than the session key. 

A special smart card command for refreshing the AES session key must be provided. 

Active SAs stored outside the smart card will not be anymore accessible after the 

execution of that command: this is because once the session key has been changed, all 

the AES keys stored on the host cannot be anymore decrypted. Therefore, when a 

session key refresh is needed, the IPSec communication module should monitor the 

number of opened SAs that are using the smart card and request that key refresh when 

the number of opened SAs is less or equal the number of available smart card SA-

database positions. The technique described above can be used only on very small 

systems. A better mechanism should be studied for more complex systems using, for 

example, a high performance crypto processor, such the one described in chapter 6. A 

proposal for this kind of systems can be: once the key-refresh command is given, the 

old session key is stored in a reserved crypto-processor memory space and it is used 

only for the SAs that had been swapped out before renewing the session key. For the 

successive swap operations on the same SAs, the new session key must be used. The 

technique described above works only if the key-refresh command is given only once in 

the maximum lifetime for the SAs (8 hours). In that way, the old key needs to be kept 

for at least 8 hours, then it is no more useful, since the SAs opened before that time 

must be closed anyway. Using more than two session keys could overcome the problem 

of being able to perform only one session key refresh during the SAs maximum 

lifetime. Probably this is not necessary, since today it is almost impossible to break a 

256-bit AES cryptographic code in a so short time. 

3.3.3. Diffie-Hellman secret 

As stated in section 1.2.3, a Diffie-Hellman secret needs to be stored in memory during 

each key exchange process. In accordance with the team developing the ECC hardware 

(see [CA-PO]), also using a 600-bit ECC key, 256 bits of memory space is needed to 

store the Diffie-Hellman secret (considering a maximum symmetric key dimension of 
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256 bits). This allows us to store the Diffie-Hellman secret related to each SA to be 

created, in the corresponding key field of the smart card SA cache. 

It must be verified if that solution can cause any interoperability problem with the other 

existing IPSec implementations. If any of those problems arise, the following proposals 

can be evaluated as alternative solutions: 

• use bigger smart card SA cache entries to allow the complete storage of the 

Diffie-Hellman secret (up to 600 bits). This solution can be suitable for small 

systems (like a smart card) in which very few cache entries should be present 

(e.g. 16).  

• use a dedicate memory area in the smart card for the storage of the Diffie-

Hellman secrets. The dimension of that memory area should be studied to avoid 

the system to stall because no positions in that area are available for the creation 

of a new SA. That memory space can also be managed as a cache, implementing 

a replacing algorithm. In the latter case, the data contained in the cache need to 

be encrypted before storage to avoid the host machine to be able to compute the 

symmetric key. 

3.4. An IKE-IPSec security policy example: the case  of a mobile user 

(“Road Warrior”) 

3.4.1. IKE phase 1 

The mode to be preferred in this phase depends on the application. The one that seems 

to be more suitable for the road warrior application is the phase 1 authenticated with a 

revised mode of public key encryption ([RFC-2409], section 5.3). The algorithms 

proposed are ECC as public key algorithm, SHA-1 as hash algorithm and AES as 

symmetric encryption algorithm. If these algorithms are not available, the classical RSA 

and triple-DES will be used. 

128-bit wide keys (with the default number of rounds for that key dimension) will be 

proposed for the usage with the AES algorithm. As a matter of fact 128-bit wide keys 

seem to provide a sufficiently high level of protection, using less system resources than 
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the ones used with wider keys. This solution also allow interoperability with all the 

systems which do not allow negotiation of the AES key-size. 

For DES the key dimension cannot be negotiated. 

For the elliptic curve cryptography, the ECC Group 8 is proposed. That group is based 

on a Galois Field GF[2283] (see [DRAFT-1]). Unfortunately, that group is not 

mandatory-to-implement for IPSec compliant systems. Therefore, if the other peer does 

not have the ECC Group 8 available, the ECC Group 4 will be proposed instead. 

The proposals for the phase 1 are summarized in Table 3.1. 

MODE 
Public key 
algorithm 

hash 
algorithm 

Symmetric 
key 

algorithm 

phase 1 authenticated with a 
revised mode of public key 
encryption 

ECC 

(Group 8 or 4) 
SHA-1 

AES  

(128-bit key) 

phase 1 authenticated with a 
revised mode of public key 
encryption 

ECC 

(Group 8 or 4) 
MD5 

AES 

(128-bit key) 

phase 1 authenticated with a 
revised mode of public key 
encryption 

RSA 

(Group 4) 
SHA-1 3DES 

phase 1 authenticated with a 
revised mode of public key 
encryption 

RSA 

(Group 4) 
MD5 3DES 

Table 3.1: IKE Phase 1 proposals for the “Road Warrior” network ordered by preference 

3.4.2. IKE phase 2 

As explained before, the mode to be preferred is the main one that guarantees PFS. 

128-bit wide keys (with the default number of rounds for that key dimension) will be 

proposed for the usage with the AES algorithm. This is done because 128-bit wide keys 

seem to provide a high level of protection, using less system resources than the ones 

used with wider keys. This solution also allow interoperability with all the systems 

which do not allow negotiation of the AES key-size. 

For DES the key dimension cannot be negotiated. 
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When our system acts as initiator in phase 2, it will do the proposals reported in Table 

3.2. 

Mode Private key 
algorithm 

Authentication 
algorithm 

Main AES (128-bit key) HMAC-SHA1  

Main AES (128-bit key) HMAC-MD5 

Main AES (128-bit key) none 

Quick AES (128-bit key) HMAC-SHA1  

Quick AES (128-bit key) HMAC-MD5 

Quick AES (128-bit key) none 

Main 3-DES HMAC-SHA1  

Main 3-DES HMAC-MD5 

Main 3-DES none 

Quick 3-DES HMAC-SHA1  

Quick 3-DES HMAC-MD5 

Quick 3-DES none 

Table 3.2: IKE Phase 2 proposals for the “Road Warrior” network ordered by preference 

3.4.3. SA Protocol selection 

For the road warrior application the protocol that seems to be more suitable is ESP in 

tunnel mode; in that way both data and headers are protected and authenticated without 

using any SA bundle. 
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4. The smart card – IPSec software interface 

The IPSec implementation will be based on a smart card that will provide the AES and 

the ECC cryptography algorithms. IPSec is the only part of the system that can directly 

communicate with the smart card, therefore a driver needs to be written. That driver will 

have to manage various functions such as the SA data swapping, as described in the 

security policy (see chapter 3). IPSec will also have to provide any way for the key 

exchange application (IKE5) to communicate with the smart card. 

The smart-card/IPSec interface was written referring to the IPSec suite of protocols 

documents, the security policy and the system’s structure. The interface specification 

contains all the commands that the smart card should provide to the system and the 

functionality that the system should support to allow the smart card to work.  

Only a description of the software interface is given here. As stated before, the 

development of the hardware interface between the smart card and the host is beyond 

the scope of this document. 

4.1. Commands 

Here follows the explanation of each command that needs to be present in the software 

interface, basing on the requirement of the system. A command summary is provided in 

Table 4.1 and in Table 4.2. 

4.1.1. IPSec to smart card commands 

In this section all the commands that can be invoked by IPSec are described. A 

complete list of those commands is provided in Table 4.1. 

                                                 
5 Here IKE is intended as a separate part with respect to IPSec, this comes from the fact that IKE operates 

at the application level, while the other two IPSec protocols (AH an ESP) operates at network level, as 

explained in chapter 1. 
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4.1.1.1. login 

It allows using the smart card after a PIN code check. This command makes the smart 

card generate the AES session key (see section 3.3.2). 

If the given PIN code is not correct, the smart card will wait for 5s before accepting a 

new attempt. After 3 consecutive login errors, the smart card stops working and needs 

an hardware reset (pull-out). 

4.1.1.2. refreshSessionKey 

This command is used to refresh the session key used for storing the SA data on the 

host. The SA information stored outside the smart card before that operation will not be 

accessible anymore. 

4.1.1.3. resetSC 

It deletes the smart card SA database and brings the smart card state back to the login 

state. The AES session key is deleted too.  

After having issued this command, all the previously opened SAs cannot be anymore 

used. 

4.1.1.4. readSCStatus 

This command allows IPSec to read the smart card internal status registers for testing 

purposes. This command will need to be further developed when the smart card layout 

will be completed. Anyway this command will be carefully thought to avoid revealing 

the keys in any case. 

4.1.1.5. setSAStatus 

This command is used to upload the SA information in a smart card memory location 

specified by the position parameter. The information sent are composed by: 

• the IV and the AES algorithm settings in clear form; 

• the AES key and the CRC result encrypted with the AES session key (see 

section 3.3). 
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The encrypted data are decrypted in the smart card and the CRC is then checked. If any 

part of the given data is wrong (i.e. the computed CRC does not correspond to the 

stored one), the smart card will give back an error code (see subsection 4.1.4). 

4.1.1.6. getSAParameters 

This command makes the smart card return the SA information corresponding to the 

given key memory position (specified by the position parameter). The data format is the 

same as described in subsection 4.1.1.5. This command is mainly needed when it is 

necessary to store the key on the host for freeing a smart card memory position.  

4.1.1.7. genDH 

This command makes the smart card generate a random number and store it in the given 

key memory position (specified by the position parameter). The smart card returns the 

result of the operation given by k*p where k is the randomly generated number and p is 

the curve point. Before giving this command, is necessary to use the setECCinfo 

command or to verify that the set ECC parameters are the correct ones using the 

getECCinfo command (a long ECC curve’s computation time can be avoided). This 

command can be used to generate the Diffie-Hellman payload to send to the other peer 

during the key exchange phase of a SA creation. 

From the point of view of the parameters: 

• The key size is coded as follows: 0 corresponds to a 128-bit AES key; 1 

corresponds to a 192-bit key; 2 corresponds to a 256-bit key. 

• The AES modes are coded as in the IPSec RFCs. 

• The number of rounds must be less or equal than 14. 

This command accomplish with the hypothesis reported in section 3.3.3. 

4.1.1.8. completeDH 

This command makes the smart card generate the AES key applying the Diffie-Hellman 

procedure on the KE-DH parameter (key=k*h*p) and the parameter previously stored in 

the given key memory position (specified by the position parameter); after that 

computation the specified key memory position is overwritten by the newly generated 

key. Before giving this command, is necessary to use the setECCinfo command or to 
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verify that the set ECC parameters are the correct ones using the getECCinfo command 

(a long ECC curve’s computation time can be avoided). This command is used to 

generate the AES key during the key exchange phase of a SA creation. 

The key size is coded as follows: 0 corresponds to a 128-bit AES key; 1 corresponds to 

a 192-bit key; 2 corresponds to a 256-bit key. 

This command accomplish with the hypothesis reported in section 3.3.3. 

4.1.1.9. deleteSA 

This command deletes the information that are in the given smart card memory position 

(specified by the postion parameter). 

4.1.1.10. symmdecrypt 

This command makes the smart card decrypt the given data using the AES algorithm 

with the parameters contained in the given memory position (specified by the position 

parameter). Before using this command the AES parameters have to be stored into the 

corresponding memory position using the setSAStatus command (for SA information 

stored on the host) or the completeDH command (for a newly created SA). A parameter 

allows to specify whether a hash checking has to be performed or not on the data. 

4.1.1.11. symmEncrypt 

This command makes the smart card encrypt the given data using the AES algorithm 

with the parameters contained in the given memory position (specified by the position 

parameter). Before using this command the AES parameters have to be stored into the 

corresponding memory position using the setSAStatus command (for host stored SA 

information) or the completeDH command (for a newly created SA). A parameter 

allows to specify whether the data have to be hashed or not with the algorithm specified 

when the SA was created. 

4.1.1.12. setECCInfo 

This command sets the ECC parameters to be used for the next ECC-block operation(s). 

The parameters are: the polynomial length (n) and 4 n-bit numbers (A and B that are the 

curve parameters; x and y that are the coordinates of the curve’s base point). If the given 
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parameters are the same of the previous invocation of the setECCInfo command, the 

smart card will not perform the ECC curve computation that would be otherwise 

needed. 

4.1.1.13. getECCInfo 

This command makes the smart card returning the ECC parameters currently used by 

the ECC block. 

4.1.1.14. getPubKey 

Request the smart card certificate (containing the smart card public key) to be sent to 

another peer. 

4.1.1.15. publicEncrypt 

Encrypt a data packet using the public key set using the setECCInfo command. This is 

useful for encrypting data to be sent to another peer (whose public key is the one that 

has been set) using the ECC algorithm. 

4.1.1.16. publicDecrypt 

Decrypt a data packet using the smart card’s private key. This is useful for decrypting 

data encrypted with the smart card public key using the ECC algorithm. 

4.1.1.17. hash 

Makes the smart card compute (and give) the specified pseudo-random function (that 

can be MD5 or SHA-1) for the given data. This command can be useful during IKE 

phase 1. 

4.1.1.18. genSymmSign 

Makes the smart card compute (and give) the specified pseudo-random function (that 

can be HMAC-MD5 or HMAC-SHA-1) for the given data. This is useful for 

symmetric-key-based authentications. 

4.1.1.19. genECDSASignature 

This service signs using ECDSA (Elliptic Curve Digital Signature Algorithm) the SHA-

1 HASH output that needs to have been previously computed. This service is used 

during IKE Phase 1 authenticated with signatures. 
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4.1.1.20. verifyECDSASignature 

This service verifies the signature according to the ECDSA algorithm. The decryption 

of the message m and the SHA-1 hash computation need to be performed in advance. 

This service is used during IKE Phase 1 authenticated with signatures. 

4.1.2. Smart card to IPSec commands 

In this section all the commands that IPSec provides for the smart card are described. A 

complete list of those commands is provided in Table 4.2. 

4.1.2.1. error 

This command is used to return an error message to IPSec. The error codes are 

described in section 4.1.4. 

4.1.2.2. loginResults 

Used to communicate the results of a user login to the smart card driver. 

4.1.2.3. testResults 

Used to communicate the results of the internal self-tests or the status of internal 

circuitry to the smart card driver. 

4.1.2.4. SCStatus 

Used to give the content of the internal Status Register after a readSCStatus request. 

4.1.2.5. SAParameters 

This command is used to give to IPSec the SA information previously requested 

through the getSAInfo command.  The data format is the same as described in 

subsection 4.1.1.5. 

4.1.2.6. randomDH 

This command is used to get to IPSec the symmetric key generation payload previously 

requested via the getSAKey command. The given key is the one corresponding to the 

specified smart card position number and it is in clear form. 
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4.1.2.7. symmdecryptedP 

This command gets the AES decrypted packet corresponding to a previous decryption 

request made using the symmdecrypt command. The decrypted packet is given with the 

smart card position number in which the corresponding SA information are stored. 

4.1.2.8. symmEncryptedP 

This command gets the AES encrypted packet corresponding to a previous encryption 

request made using the symmdecrypt command. The decrypted packet is given with the 

smart card position number in which the corresponding SA information are stored. 

4.1.2.9. ECCInfo 

This command gives the current ECC parameters previously requested with the 

getECCInfo command. 

4.1.2.10. ECCKey 

This command gives the smart card public key previously requested with the getPubKey 

command.  

4.1.2.11. ECCEncrypted 

This command gives the ECC encrypted packet corresponding to a previous encryption 

request made using the publicEncrypt command. The encryption is made using the other 

peer’s public key previously set with the setECCInfo command. 

4.1.2.12. ECCDecrypted 

This command gets the ECC decrypted packet corresponding to a previous encryption 

request made using the publicDecrypt command. The decryption is made using the 

private key stored in the smart card. 

4.1.2.13. hashResults 

Gives the result of the pseudo-random function applied to the data passed with the PRD 

command.  

4.1.2.14. symmSign 

Gives the result of the HMAC-MD5 or HMAC-SHA-1 function applied to the data 

passed with the getSymmSign command. 
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4.1.2.15. ECDSASignature 

Gives the ECDSA signature obtained from the data previously sent through a 

genECDSASignature command. 

4.1.2.16. ECDSACheckRes 

Gives the result of the verifyECDSASignature command. 

4.1.2.17. confirmation 

Confirm a previously requested action. The returned code is the command code of the 

requested action. The commands which need confirmation are the following ones: 

• refreshSessionKey 

• resetSC 

• setSAStatus 

• completeDH 

• deleteSA 

• setECCInfo 

4.1.3. Command table 

In Table 4.1 and in Table 4.2 are defined the codes and the data exchanged using the 

appropriate interface between the two peers. The commands that can be issued by IPSec 

(described in subsection 4.1.1) are shown in Table 4.1, while in Table 4.2 are shown the 

command that can be issued by the smart card (described in subsection 4.1.2). 
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Task 
N. 

Task Name Data Exchange Operation Notes 

1 login PIN s.c. login. After the validation a new 
AES session key is generated 

without doing this operation, 
the s.c. will refuse every 
request 

2 refreshSessionKey  makes the s.c. generate a new AES 
session key 

old SAs information stored in 
IPSec will not be usable 
anymore 

3 resetSC  resets the s.c.: all the information 
contained in the s.c. are deleted and a 
new AES session key is generated 

 

5 readSCStatus Register number makes the s.c. give the specified 
register status 

 

6 setSAStatus position, SA_info sets the AES parameters for the 
indicated SA 

 

7 getSAParameters position requests the "position" SA stored into 
the s.c. 

the given key is encrypted 
with AES using a key 
generated at the s.c. startup 

8 genDH position, dim. of the 
symmetric key, 
number of rounds, 
mode 

makes the s.c. generate the random 
number (k), store it into the SA space 
and compute k*p where p is an ECC 
curve's point 

 

9 completeDH position, dim. of the 
symmetric key, KE-DH 

completes the DH computation doing 
p*k*h 

with this command the SA 
creation process is completed 

10 deleteSA position deletes the SA information from the s.c. 
memory 

 

11 symmdecrypt position, data length, 
packet of ecnrypted 
data, hash flag,IV flag 

decrypts data. The length of the data 
packet is given by the data length 
parameter and every packet sent as 
data after this command has and ID 
number 

first the SA parameters have 
to be set 

12 symmEncrypt position, data length, 
packet of data,hash 
flag, IV flag 

encrypts data. The length of the data 
packet is given by the data length 
parameter and every packet sent as 
data after this command has and ID 
number 

first the SA parameters have 
to be set 

13 setECCInfo n, A, B, x, y [, 
public_key] 

sets the parameters needed by the 
ECC 

n=polynomial length; 
A,B=curve parameters; x, 
y=curve’s base point.  

14 getECCInfo  requests the parameters that ECC is 
using when this command is given 

 

15 getPubKey  requests the s.c. public key  
16 publicEncrypt packet of data encrypts with public key algorithm 

using a specified key and ECC 
polynomial 

a setECCinfo command must 
be given first 

17 publicDecrypt packet of ecnrypted 
data 

decrypts with public key algorithm 
using the private key stored into the 
s.c. 

a setECCinfo command must 
be given first 

18 hash data1, data2, prf_fcn generates the specified pseudo-
random function of the given data 

prf_fcn can be MD5 or SH-1 

19 genSymmSign sa#, data1, data2, 
hash_fcn 

generates a signature using a 
symmetric key 

hash_fcn can be HMAC-MD5 
or HMAC-SH-1 

20 genECDSASignature data generates an ECDSA signature  
21 verifyECDSASignature data checks the ECDSA signature of the 

given data 
 

Table 4.1: table of the command provided by the smart cards for IPSec  
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Task 
N. 

Task Name Data Exchange Operation Notes 

22 error error code communicates an error to IPSec  
23 loginResults results replies to a login request subsequent to a login 

command 
24 testResults results gives the result of the s.c. test subsequent to a testSC 

command 
25 SCStatus register content gives the actual content of the specified 

s.c. register 
subsequent to a 
readSCStatus command 

26 SAParameters position, info gives the information about a SA 
previously requested by IPSec 

subsequent to a 
getSAParameters command 

27 randomDH position, k gives the randomly generated number 
for the D-H key exchange 

subsequent to a genDH 
command 

28 symmdecryptedP position, decr_packet gives the decrypted packet relative to a 
SA 

subsequent to a 
symmdecrypt command 

29 symmEncryptedP position, encr_packet gives the encrypted packet relative to a 
SA 

subsequent to symmEncrypt 
command 

30 ECCInfo n, A, B, x, y [, 
public_key] 

gives the information about the currently 
used ECC parameters 

subsequent to getECCInfo 
command. For the return 
parameters refer to the ones 
of getECCInfo 

31 ECCKey Key gives the s.c. public key previously 
requested 

subsequent to getPubKey 
command 

32 ECCEncrypted encr_packet gives an ECC encrypted data packet subsequent to publicEncrypt 
command 

33 ECCDecrypted decr_packet gives an ECC decrypted data packet subsequent to publicDecrypt 
command 

34 hashResults data gives the hash function subsequent to PRD 
command 

35 symmSign signature gives the symmetric signature subsequent to 
genSymmSign command 

36 ECDSASignature signature gives the ECDSA signature subsequent to 
genECDSASign command 

37 ECDSACheckRes results  subsequent to 
verifyECDSASignature 
command 

38 confirmation ofWhich confirms a previous command. subsequent to 
refreshSessionKey, 
resetSC, setSAStatus, 
completeDH, deleteSA or 
setECCInfo commands. 
ofWhich is the code of one 
of these commands 

Table 4.2: table of the command provided by IPSec for the smart card 

4.1.4. Error codes 

In Table 4.3 a list of all the possible error code that the smart card can return and an 

explanation of these error codes are given. 
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number error type optional 
parameters 

Description 

1 generic error   
2 Bad SA index SA position given when a command requests an operation on a SA location that has not  

been initialized 
4 wrong AES packet SA position given when a wrong encrypted packet is passed as setSAStatus command 

parameter 
5 tampered SA 

information 
SA position given when a tampered SA information is passed as setSAStatus command 

parameter: this is an auditable event 
6 wrong DH number  given when using a completeDH a wrong KE-DH parameter is passed  
7 AES parameters not 

set 
SA position given when some parameters for the AES algorithm are missing for a 

requested SA 
8 wrong ECC info  given when one or more of the setECCInfo parameters are mistaken 
9 ECC info not set  given when a publicEncrypt or publicDecrypt command is given without 

having set the ECC parameters first 
10 wrong PRD 

parameter 
 given when a mistaken parameter is passed using the PRD command 

11 wrong symmSign 
parameter 

 given when a mistaken parameter is passed using the getSymmSign 
command 

12 wrong signature 
control parameter 

 given when a mistaken parameter is passed using the signatureControl 
command 

13 login already done  given when someone tries to login the s.c. while it has already been done 
14 can't refresh the 

Session Key 
 given when for some causes (e.g. key in use by the AES module) the AES 

session key cannot be modified 

Table 4.3: error codes 

4.2. Software communication protocol 

Looking at the command table, three different command formats can be identified. Each 

of these formats has a different length from the other ones, depending on the parameters 

which are needed. We name those three command formats A, B, and C. The format A is 

composed of only one word; the format B supports one word for the command identifier 

and n words of data. The format C is composed of a word for the command identifier, 

one word for additional parameters, and n words of data. 

4.2.1. Command Format A (1 word) 

The command format A is composed of 4 bytes only, in which the command identifier 

and the needed command parameters are included. See Table 4.10 and Table 4.11 for a 

detailed list of format A commands. 

Command Identifier (1 word) 

Bit number Function 
31-24 Command ID 
23-0 Parameters 

Table 4.4: A command format  
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4.2.2. Command Format B (1+n word) 

The command format B has a variable size, depending on the size of data to be 

transmitted. The first 4 bytes of the command are used to specify some parameters and 

how many packets of data follow the header. See Table 4.10 and Table 4.11 for a 

detailed list of format B commands. 

Command Identifier (1 word) 

Bit number Function 
31-24 Command ID 
23-0 Parameters 

Table 4.5: B command format – header 

Data (n words) 

Bit number Function 
n*8-0 Data 

Table 4.6: B command format – data 

4.2.3. Command Format C (1+1+n words) 

The command format C is very similar to the format B, since its size depends on the 

data to be transmitted. The only difference is that the C command format allows two 

different sets of data to be sent using the same command; the first data packet is of fixed 

length, wile the second one is of variable length. The first 4 bytes of the command are 

used to specify some parameters and how many packets of data follows the header. See 

Table 4.10 and Table 4.11 for a detailed list of format C commands. 

Command Identifier (1 word) 

Bit number Function 
31-24 Command ID 
23-0 Parameters 

Table 4.7: C command format – header 

Parameters(1 word) 

Bit number Function 
31-0 Data 

Table 4.8: C command format – data, 1st part 
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Data (n words) 

Bit number Function 
n*8-0 Data 

Table 4.9: C command format – data, 2nd part 

4.2.4. Command format tables 

The format of the commands described in section 4.1.1 is shown in Table 4.10, while 

the format of the commands described in section 4.1.2 is shown in Table 4.11. 

In both tables the symbol “�x� “is used. That symbol stands for “the smallest integer 

greater then or equal to x” (ceil). 
Task Name Command 

Format 
Parameters 
number 

Command words Data Exchanged 

Login A 1 1 command code (bits 31-24), PIN value (bits 23-0) 
refreshSessionKey A - 1 command code (bits 31-24) 
ResetSC A - 1 command code (bits 31-24) 
TestSC t.b.d. t.b.d. t.b.d. to be defined 
readSCStatus A 1  command code (bits 31-24), register number 
setSAStatus B 1+1 1+n command code (bits 31-24), SA index (bits 7-0), crypted_info 
getSAParameters A 1 1 command code (bits 31-24), SA index (bits 7-0, bit 7 is MSB) 
GenDH A 1 1 command code (bits 31-24), mode (bits 23-20), number of 

rounds (bits 19-16), key size (bits 15-8), SA index (bits 7-0) 
[see section 4.1.1.7 for details about the parameters] 

completeDH B 1+1 1+n packet 1: command code (bits 31-24), key size (bits 15-8), SA 
index (bits 7-0); 
packet 2: KE-DH 

DeleteSA A 1 1 SA index (bits 7-0) 
symmDecrypt C 1+4+1 1+1+n packet 1: command code (bits 31-24), SA index (bits 7-0);  

packet 2: hash flag (bit 24), sign. append (bit 23), IV flag (bit16), 
data length (bit 15-0); 
next packets: encrypted data 

symmEncrypt C 1+4+1 1+1+n packet 1: command code (bits 31-24), SA index (bits 7-0); 
packet 2: hash flag (bit 24), sign. append (bit 23), IV flag (bit16), 
data length (bit 15-0) 
next packets: clear data 

SetECCInfo B 1+4 [5] 1+ �n/32� *2+�2n/32�*2 
[+�n/32�] 

packet 1: command code (bits 31-24), curve length (n) (bits 23-
8), data packet length (bits 7-0) 
next packets: A, B, x, y [, public_key] 

GetECCInfo A - 1 command code (bits 31-24), 
GetPubKey A - 1 command code (bits 31-24), 
PublicEncrypt B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0) 

next packets: clear data 
PublicDecrypt B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0) 

next packets: encrypted data 
Hash B 3+2 1+n packet 1: command code (bits 31-24), length (bit 23-16), length 

(bit 15-8), hash func. (bits 3-0) 
next packets: data1, data2 

HashInsertSimmKey A 1 1 command code (bits 31-24), SA index (bits 7-0) 
GenSymmSign B 3+2 1+n packet 1: command code (bits 31-24), length (bit 23-16), 

Signature func. (bits 11-8), SA index (bits 7-0) 
next packets: data1, data2 

genECDSASignature B 1+1 1+n packet 1: command code (bits 31-24), length(7-0) 
next packets: data 

verifyECDSASignature B 1+1 1+n packet 1: command code (bits 31-24), length(7-0) 
next packets: data 

Table 4.10: format table of the “IPSec to smart card” commands 
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Task Name Command 
Format 

Parameter
s number 

Command words Data Exchanged 

Error A 1 1 command code (bits 31-24), SA index (bits 15-8), error code (bits 
7-0)  

LoginResults A 3 1 command code (bits 31-24), login counter (bits 10-8); status 
code (bits 7-4); results (bit 0); 

TestResults t.b.d. t.b.d. t.b.d. to be defined 
SCStatus A 1 1 command code (bits 31-24), status code (bits 17-0); 
SAParameters B 1+1 1+n command code (bits 31-24), SA index (bits 7-0), info 
RandomDH B 1+1 1+n command code (bits 31-24), SA index (bits 7-0), k 
SymmDecryptedP B 1+1 [2] 1+n [+m] Packet 1: command code (bits 31-24), SA index (bits 7-0); 

next packets: decr_data[,sign.] 
SymmEncryptedP B 1+1 [2] 1+n [+m] Packet 1: command code (bits 31-24), SA index (bits 7-0); 

next packets: encr_data [,sign.] 
ECCInfo B 1+4 [5] 1+ �n/32� 

*2+�2n/32�*2 
[+�m/32�] 

packet 1: command code (bits 31-24), curve length (n) (23-8 
bits), data packet length (bits 7-0) 
next packets: A, B, x, y,  public_key] 

ECCKey B 1 1+n packet 1: command code (bits 31-24), key length (23-8 bits), 
packet length (bits 7-0) 
next packets: Key 

ECCEncrypted B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0) 
next packets: encr_packet 

ECCDecrypted B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0) 
next packets: decr_packet 

HashResults B 1 1+n packet 1: command code (bits 31-24),  length (bits 7-0) 
next packets: data 

SymmSign B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0) 
next packets: signature 

ECDSASignature B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0) 
next packets: signature 

ECDSACheckRes B 1 1+n packet 1: command code (bits 31-24), length (bits 7-0) 
next packets: results 

Confirmation A 1 1 command code (bits 31-24), executed command code (bits 7-0); 

Table 4.11: format table of the “smart card to IPSec” commands 

4.3. The communication function 

The command format has an intuitive structure for command passing between IPSec 

and the smart card. Two functions, one for each side of the communication channel 

between IPSec and the smart card, will be provided. Those functions will have two 

arguments each. The former argument is the length of the latter one. The second 

argument is an array of 32-bit integers carrying the codified command with its 

parameters. The length given in the first argument is represented as the minimum 

number of 32-bit integers which are needed for containing the data to be sent. 



Chapter 5 Writing the software interface C++ code 48 
 

 

5. Writ ing the software interface C++ code 

In this chapter we discuss the project specification and a implementation of the software 

interface previously described. 

The implementation here proposed has to be taken as a reference implementation, that 

should be modified and optimized before being used in a real life system. It should be 

modified to take into account the necessary synchronization issues that can raise 

between the various elements of the system. This cannot be done here, being the 

synchronization techniques specific for every considered system. 

The programming language chosen for this implementation is C++. 

The main objective of what proposed here is to provide a more clear view of the 

software interface and how it should be used. 
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5.1. UML class diagram 

Figure 5.1 shows the UML class diagram specifying our software system; the figure 

also shows the SmartCard and the iKE classes, which are not developed by us. 

SmartCard is the class containing the software model of the smart card (or the interface 

to the hardware smart card), while iKE is the class representing the implementation of 

the IKE protocol. Figure 5.2 shows the detailed description of the sC_driver class. 

 

Figure 5.1: UML class diagram of the system 
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Figure 5.2: UML class diagram of the sC_driver class 

Figure 5.3 shows the UML sequence diagram describing the typical behavior of the 

system. In that diagram all the operations related to a request of symmetric encryption 

are shown. A similar diagram can be drawn for all the other possible operations. 

 

Figure 5.3: UML sequence diagram of the system 
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5.2. Testing methods 

Using an Object Oriented programming language, we choose to test our code by using 

the built in self test methodology ([FUG]): in each method of the written classes the 

required preconditions and the post-conditions will be checked through C++ assertions. 

This is used to ensure data consistency in the class, but a functional test of the system, 

as a class interoperability test is still needed. 

5.3. The smart card software driver 

The smart card driver represents a special part of the system.; it allows the IPSec 

implementation to communicate with the smart card and to hide certain smart card 

characteristics (e.g. the maximum number of available memory slots) to the IPSec 

implementation itself. The implementation issues related to this part of the system are 

described in the following paragraphs. 

5.3.1. SA swap policy 

In some cases, it will be necessary to swap out a SA from the smart card. We use the 

Least Recently Used (LRU) policy to select the SA to be stored outside the smart card. 

To implement that policy, it is necessary to keep track of the time when a SA was last 

used. This can be done using the counter technique ([TAN], pp.79-120): a variable for 

each SA stored in the smart card is updated every time one of the SAs is used. The 

update consists of decrementing the set of variables (one for each SA). Those variables 

are initialized at the maximum available value for the kind of chosen number 

representation (for example the maximum value available with a 32 bit-wide unsigned 

integer). Each time it is necessary to store a SA outside the smart card, the one with the 

lowest value of that variable is selected. 

5.3.2. Synchronization issues 

During the simulation of the system, it is necessary that only one smart card model is 

instantiated (we have to avoid that for every IPSec session created a smart card object is 

instantiated). This can be done by instantiating the driver during the IPSec initialization 
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phase. Anyway, a check for the condition that only one smart card model has been 

instantiated, can be provided by a static counter, incremented and checked as a class 

constructor precondition at each driver instantiation. 

The other thing we have to consider is that, if there are more than one IPSec sessions 

opened, only one of these can access the driver at a given time. For keeping under 

control this condition, we choose to use a counter. That counter will be checked at each 

driver’s call done by an IPSec session. We have to note that the mechanism described 

before could be not sufficient in a real system and a more suitable technique should be 

implemented using the primitives offered by the considered operating system. Checking 

the counter as described before should be enough if the smart card driver is used 

coupled with a Linux IPSec implementation and compiled in the kernel (see [POM] in 

the “character device files” section). Those two conditions seem to be not too hard to 

respect being that all the known IPSec implementation for Linux  run as kernel 

modules. 

The smart card will manage the received commands using a FIFO queue, therefore we 

have to take into account that in some cases that queue can become full. For doing this 

we will use a counter of the free FIFO queue positions and we will return an error code 

to the IPSec calling function when that counter reach the 0 value. We can use a simple 

counter increment and decrement because, as stated before, only one driver instance can 

run at a given time. 

Assuming that there will be only one smart card for every instance of the driver, the 

ip_rcv method implements no synchronization mechanism. 

5.3.3. Data structures 

Two different types of information have to be stored in the smart card driver: 

• a map of the smart card memory, to know where a security association is 

allocated; we name this structure “scSlot”;  

• a list of the security associations that are using the smart card; we name this 

structure “saInfo” . 
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The first structure is pretty small, since the smart card has a small amount of memory. 

The second one can be as big as we want, to store all the possible SAs that can be 

managed by the host. 

For each element of the smart card memory we need to store two pieces of information: 

the number of the SA that is allocated in that slot and the usage counter as described in 

the paragraph above (Figure 5.4). 

saInfo* posArray; 
unsigned int usage; 

scSlot 

 

Figure 5.4: the scSlot structure 

For each element of the SA list, we need to store three pieces of information: the SA 

number, the smart card memory cell where the SA is possibly allocated, and, optionally, 

the data swapped from the smart card for that SA (Figure 5.5). When a SA is not 

allocated to any smart card memory position, (i.e. that SA has been swapped out) we 

store in the corresponding field a position number obtained by the number of the last 

smart card memory slot plus one. 

unsigned int sa; 
unsigned int slot; 
unsigned int* saved; 

saInfo 

 

Figure 5.5: the saInfo structure 

While it is clear that the structure described above can be organized in an array where 

each element is mapped on a smart card memory position, the same is not clear in the 

case of the SA list. Logically it would be better to organize the information in a 

dynamic structure like a list, but for speed purposes (we will need to search in that 

structure very often) using an array would a better choice. However an array does not 

provide the capability to grow as the requests of new SAs does. Therefore we choose to 

use an array of SA structures containing 40 times the number of available smart card 

memory slots. In that way we will be able to provide at most the equivalent of 40 

opened SAs for each smart card memory slot. This could seem a limitation on the 
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system’s capability, but we have to consider the fact that allowing too many opened 

SAs on the same smart card can force the system to loose more time swapping data 

between the smart card memory and the host than encrypting and decrypting data. 

TO summarize, the two data structures considered are: 

• sc: an array of scSlot structures (Figure 5.6); the length of this array corresponds 

to the number of memory slots available in the smart card (e.g. 16). 

• saArray: an array of saInfo  structures (Figure 5.7); the length of this array is 40 

times the length of the sc array, (e.g. 16*40=640). 

saInfo* posArray; 
unsigned int usage; scSlot 

scSlot 
scSlot 

scSlot 

scSlot 

scSlot 

scSlot 

. 

. 

. 

sc 

 

Figure 5.6: the sc data structure 

unsigned int sa; 
unsigned int slot; 
unsigned int* saved; 

saInfo 

saInfo 

saInfo 

saInfo 

saInfo 

saInfo 

saInfo 

. 

. 

. 

saArray 

 

Figure 5.7: the saArray data structure 

5.3.4. How the driver works 

The smart card driver must perform two tasks : 

• send and receive commands and data to the smart card 

• swap SA data from the smart card. 

In the first implementation of the driver, we will perform data swapping only when 

needed (e.g. when all the smart card memory slots are filled and there is the request of 

using a SA that is not in one of these slots), but a more efficient storage and swap policy 

can be implemented. 

The driver receives the commands from the iPSec and from the iKE classes (through the 

iPSec one) and sends them to the smart card. 

Here are the different kind of situations that the driver has to manage: 

• When the driver receives the request to create a new SA it must first verify that 

there is enough space, both in the saArray array and in the smart card memory. 
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If there is no space in the saArray, the creation request must be refused. If the 

smart card memory is full, a swap will have to be performed. The smart card 

memory slot to swap must be chosen based on the swap policy previously 

described. After a free position is found or created through a swap, the driver 

can issue the command to create the new SA.  

• When the driver receives a request to use the smart card with a specific SA (such 

as for the requests of data encryption or decryption), it must verify if the 

specified SA ha already been in a smart card memory slot; if not, it must retrieve 

the needed information from the host memory and put them in a smart card 

memory slot previously chosen. Once all these procedures are completed, the 

driver can send the desired command to the smart card. 

• In all the other cases the driver must marshal the given command with its 

parameters and send the result to the smart card. 

We have to remember that every time a SA is used the usage information have to be 

updated for each smart card memory slot. 

All the commands are sent to the smart card or arrives from the smart card in the format 

described in the section 4.2, so that the data and the commands can be marshaled and 

put into an array of unsigned integers. 

When the driver receives data from the smart card, it only has to pass them to IPSec by 

calling the suited function (chosen by looking at the command code). 

The C++ code of this class can be found in Appendix A. 

5.3.5. How IPSec should interact with the driver 

When IPSec makes a request to the driver, it must take into account the fact that the 

driver itself may not be able to pass the given command to the smart card. This can 

happen when the command queue has became full. In that case an error code will be 

returned by the driver and IPSec will have to wait until a slot in the command queue 

will become free. For the first implementation of the driver, this should be done by 

retrying after a delay. Implementing a more suitable synchronization mechanism using 

the operating system primitives would be a good improvement for future releases. 
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We have to note that all these synchronization cannot be done in the driver because 

making the driver wait for some tasks would deny all the other processes to access the 

smart card. 
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6. The crypto-processor used on a router:  study of 

the optimal SA cache dimension 

In the first part of this document, we mostly referred to a crypto-system based on a 

smart card. In this section we will no more refer to a smart card, but to a very similar 

system built in a SoC6. Therefore here we will refer to a processor dedicated for 

cryptography, not considering anymore the limitations commonly considered for smart 

cards, such as the low power consumption. The core of our crypto-system can be 

therefore based on a relatively high performance embedded processor such as an ARM 

at 200MHz, while the main cryptographic functions can be implemented in hardware 

considering a higher clock frequencies than the one used in smart-card-like systems. 

6.1. Reference system 

In this part of the document we are referring to a system like the one shown in Figure 

6.1. Here the IPSec host is coupled with a router; in that way all the communications 

between the machines belonging to the network in the dashed rectangle and the other 

ones, are protected through IPSec tunneling by the IPSec router. The machines in the 

left part of the scheme have to support IPSec for establishing secure connections with 

the machines protected by the IPSec-router. The IPSec-host has chosen to be protected 

by a firewall for diminishing the possibility of DoS attacks. Possibly the firewall should 

be coupled with an intrusion detection system (see section 1.5). Those choices about the 

network topology are anyway not influencing the results by the cache dimension study 

described in this chapter. 

The additional requirements we are considering for the system are: 

• Up to 200Mbit/s of throughput 

• Up to 512 entries in the security processor’s cache 

                                                 
6 System on a Chip. 
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All the other requirements, such the ones regarding the security of the keys are kept as 

stated in section 2.1. 
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Figure 6.1: IPSec router reference system 

 

As stated before, for such a system we can no more use a smart-card like security-

processor, we prefer to consider a traditional integrated circuit, with the same structure 

and interface of the smart card we described in the previous sections of this document. 

When needed, we will refer to the data related to a standard 32-bit 66MHz PCI bus as 

hardware interface between the host and the crypto-processor, although a different 

interface could be chosen during the development of this project. 

In this section we will refer to the various system’s components as illustrated in Figure 

6.2. The acronyms used in that figure are explained below: 

• SPD is the Security Policy Database, containing all the information about the 

system’s security policy 

• IP is the usual IP layer, belonging to the usual protocol stack 

• SAD is the Security Association Database, containing all the information about 

each opened SA (keys, settings, SA identifier, IV, …). It is really important to 

note that all the “sensible” information here are stored in encrypted form (AES, 

256 bit-wide key) so that these information are readable only in the crypto-

processor. See section 3.3 for further details. 
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Figure 6.2: internal system representation 

• IPSec is the block implementing all the IPSec communication functionality. For 

all the cryptography-related stuff it uses the Crypto-processor, through the 

Interface block. 

• IKE  is the block implementing the key exchange and the SA creation processes, 

basing on the data in the SPD. It uses the IP services and it fills the SAD fields 

once the SAs are created. 

• The Interface: 

o  on the host side, is the software interface between the IPSec software 

layer and the crypto-processor. It manages all the communications 

between these two blocks and it manages the SAC. As a matter of fact 

(see section 3.3 and chapter 4) the SAC is contained in the crypto-

processor, but it is manager by the host Interface block. 

o On the crypto-processor side the interface manages the communications 

never giving out the keys in clear form. 

• Crypto-processor is the macro-block implementing all the needed 

cryptographic algorithms (public and symmetric key encryption, authentication, 

D-H exchanges). This block contains: 
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o the SAC, that is the cached portion of the SAD.  

o the ECC block, that implements in hardware or on software (see [CA-

PO] for details) the ECC algorithm 

o the AES block, that implements in hardware or in software (see [MAC-

MAR] for details) the AES symmetric encryption algorithm 

o the HMAC  block, that implements the hashing algorithms 

As we stated in the previous sections, the problem of dimensioning the SAC, can be 

seen as a cache dimensioning problem; for that cause, in the next parts of this document, 

all the occurrences of the word “cache” have the same meaning of the word “SAC”. 

6.2. Simulation data 

For all the simulations we used the data provided by the ITA site ([ITA-1], [ITA-2]). 

That data was  obtained through tcpdum, a Unix tool for dumping the traffic of a 

system. The data was then modified by a script called sanitize for preserving the privacy 

of the people using that system. The typical data founded there contain in each line of 

the file a timestamp, the source and the destination IP  addresses (modified for privacy), 

the source and the destination TCP ports, and the dimension of the datagram. The first 

few lines of the data file we used are shown in Figure 6.3. 

 

0.010445 2 1 2436 23 2 
0.023775 1 2 23 2436 2 
0.026558 2 1 2436 23 1 
0.029002 3 4 3930 119 42  
0.032439 4 3 119 3930 15  
0.049618 1 2 23 2436 1 
0.052431 5 2 14037 23 2 
0.056457 2 5 23 14037 2 
0.057815 6 7 23 1502 414  
0.072126 8 9 1023 513 0  

 

Figure 6.3: first few lines of the data file 

The data we considered represent the traffic between the Lawrence Berkley Laboratory 

and the rest of the world. That data are only about TCP traffic, but, considering this is 

the prevalent part of that system’s traffic, these data could be good for our simulations. 



Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 61 
 

 

On the ITA site there are two tcpdump files taken from that system dumped in different 

day times and of a different length (the first is two hours long and the other is one hour 

long). Being the two dumps very similar from the point of view of throughput and 

number of datagrams managed per second, we chose to primarily use the longest one 

(around 1.8 million of rows, [ITA-1]). The throughput reached on that system is around 

330kbit/s, so it is considerably lower than the maximum throughput desired for our 

system. This will be completely not influent when we will care about the SAC cache 

miss statistics, but it will be very important when we will care about the system timings. 

In that case we will need to scale all the timestamps for reaching the desired throughput 

of 200Mbit/s.  

Unfortunately the data are about normal IP connections, so no information about the SA 

creation and closure are reported.  

Another file (for each dump) containing the TCP SYN/FIN packets is also available. 

6.3. Number of opened SA 

Running a first program on the data file, we can obtain some graphs about the number 

of SAs needed at a given time for managing all the connections passing through the 

system. Having no information about the SA closure, we can try four different ways for 

keep the number of opened SAs under control during the simulations: 

• no SA closure until they reach the maximum value for their sequence number 

(232) or the 8 hours limit; 

• SAs are closed when unused for more than 30 minutes; this condition is checked 

every minute; 

• when a TCP FIN packet sis received, the corresponding SA is closed; 

•  SAs are closed when unused for more than 30 minutes or when the system 

receives a TCP FIN packet. 

The last three condition are here proposed for simulation purposes only, however the 30 

minutes timeout can be evaluated as a condition to be applied in real systems too. 

The first way is the one that would probably be used on a real system where the lifetime 

for each SA can be negotiated.  
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The number of SAs opened over time is shown in Figure 6.4. In that figure are 

considered the four cases previously illustrated: 30 min. timeout and not considering the 

FIN packets, 30min. timeout also considering the FIN packets, considering the FIN 

packets without any timeout, without any timeout and without considering the FIN 

packets. The simulation program used for obtaining that results is reported in Appendix 

B and it is explained in section 6.4.2. 

 

Figure 6.4: number of opened SAs over time 

As can be easily noted, the number of SAs continues to grow if no closing policy is 

implemented or when only the TCP FIN packets are considered. The behavior of a real 

IPSec system should be slightly different, due to the possibility of setting an expiration 

time for each SA (anyway shorter than 8 hours). We stated that the behavior should be 

“slightly different” because specifying the expiration time is not mandatory. Moreover, 

when one of the two parties closes a SA, it can or cannot inform the other (see for 

example [FSWAN]). In the latter case, there can be anyway a lot of SAs opened and 

unused. 

For understanding the behavior of the system in the four cases explained above, we can 

also look at the graphs representing the distribution of the creation of new SAs over 1 
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second intervals. These distribution are shown in Figure 6.5 (no SA closing policy 

adopted), Figure 6.6 (SAs  are closed after being unused for more than 30min.), Figure 

6.7 (SA closed when a TCP FIN packet is received), Figure 6.8 (SAs  are closed after 

being unused for more than 30min. or when a TCP FIN packet is received). 

Not considering the initial phase, where a high number of new SAs is created (around 

35 in the first second), we can note that the creation of new SAs is a process pretty well 

distributed over the whole simulation time. 

Using the TCP FIN packets for closing the SAs, causes more SAs to be newly opened in 

each second (because of SAs that need to be re-opened) and does not really limits the 

number of SA opened at a given time (see Figure 6.4). Those considerations are 

confirmed looking at the graphs representing how many times a SA is used before being 

closed. Those graphs are shown in Figure 6.9 (no timeout, not considering the TCP FIN 

packets), Figure 6.10 (30 min. timeout, not considering the FIN packets), Figure 6.11 

(no timeout, using the FIN packets), and Figure 6.12 (30 min. timeout, using the FIN 

packets). In those graphs each SA is represented by a number on the abscissas axe. 

 

Figure 6.5: SA creation distribution over 1s intervals 
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Figure 6.6: SA creation distribution over 1s intervals when a 30min. timeout is set on unused SAs 

 

Figure 6.7: SA creation distribution over 1s intervals when the TCP FIN packets are used for closing the 
SAs 
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Figure 6.8: SA creation distribution over 1s intervals when a 30min. timeout on the unused SAs is set and 
the SA TCP FIN packets are used for closing the SAs 

 

Figure 6.9: reuse of the SAs before being closed 
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Figure 6.10: reuse of the SAs before being closed when a 30min timeout on the unused SAs is set 

 

Figure 6.11: reuse of the SAs before being closed using the TCP FIN packets for closing the SAs 
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Figure 6.12: reuse of the SAs before being closed when a 30min timeout on the unused SAs is set and 
using the TCP FIN packets for closing the SAs 

 

As can be noted looking at those graphs and at the results obtained from the simulations 

(see section 6.4.4), the highest SA reuse is obtained when no SA closing policy is 

adopted (average reuse of 483 times); slightly different results are obtained using the 30 

minutes timeout (average reuse of 421). A consistent worsening of the SA reuse is 

obtained using the TCP FIN packets for closing the SAs (average reuse of 140 when 

using that policy alone and of 135 when combined with the 30 min. SA timeout). The 

different number of SAs shown in each of the four graphs is due to the fact that when 

using the TCP FIN packets or the 30 minutes timeout for the SAs closure, some SAs are 

later reopened with the same source and destination IP address (please note that the SAs 

are correctly considered different, since they are negotiated at different times, with 

different keys and, possibly, with different parameters). 

The SA negotiation is here considered to be done only when needed, while applying 

“IKE Phase 2 quick mode” negotiations, two SAs are opened at the same time, one for 
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each direction of the communication. See section 6.4.8 for further details about this 

topic. 

As stated before, on a real system the policy to be adopted would probably be the one 

considering a timeout on the unused SAs. That timeout should be chosen basing on a 

profiling of the real system’s traffic and used in conjunction with the SAs lifetime data. 

The better solution would be to check if the SA chosen to be closed due to the expired 

timeout is or is not considered alive by the other peer. In our simulation we will anyway 

consider all the four described cases, using an upper bound for the dimension of the 

SAD of 4,000 records. In that way the SAD is large enough for not limiting the number 

of opened SAs at any time during the simulations. 

6.4. Cache dimension study without considering the crypto-processor 

delays 

In this section we illustrate the simulation we wrote and we ran to find the best 

dimension to be adopted for the SAC. None of the delays introduced by the crypto-

system are here considered. 

A LRU replacing policy ([P-H], pp. 380-402) is adopted for the SAC elements. For the 

same cache, we choose to use a completely associative structure ([P-H] , pp. 380-402). 

6.4.1. Space needed for the SAC 

In the crypto processor only few information are really needed for processing the data 

related to each SA. Studying the SAD fields that we need to also keep in the SAC, and 

their dimension, we are able to compute how many space the SAC require on the 

crypto-processor chip. The computation is done considering the worst possible case. 

Considering an ISAKMP SA, the required fields are shown in Table 6.1. 
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Field Length (worst case) 
AES key 256 bits 
AES encryption algorithm, IV mode 8 bits 
symmetric key size, number of  rounds, 
authentication algorithm  

8 bits 

IV 128 bits 
Total 400 bits = 50 bytes 

Table 6.1: memory space needed in the SAC for each ISAKMP SA 

While considering an IPSec SA we obtain the result shown in Table 6.2. 

Field Length (worst case) 
AH/ESP – key size, authentication algorithm  8 bits 
AH/ESP – symmetric key 256 bits 
ESP encryption algorithm, number of  rounds, IV 
mode 

8 bits 

IV 128 bits 
Total 400 bits = 50 bytes 

Table 6.2: memory space needed in the SAC for each IPSec SA 

We can note that in both cases we need 50 bytes for each SA to be stored in the SAC. 

We choose to use, mainly for expansibility purposes, a dimension of 64 bytes for each 

SAC entry. 

We can now compute the SAC dimensions related to the different numbers of SAC-

entries chosen, as shown in Table 6.3. 

Number of entries Dimension (bytes) 
16 1024 (1kb) 
32 2048 (2kb) 
64 4096 (4kb) 
128 8192 (8kb) 
256 16384 (16kb) 
512 32768 (32kb) 

Table 6.3: space needed for the SAC depending on the number of entry chosen 

6.4.2. Designing the simulation 

The simulation we need to write in this phase has only to keep track of what happens in 

the cache, when the data read from the file are used as input for the system. This means 

that no timings need to be taken into account. Looking at the source and destination IP 

addresses read from the data file, the program must be able to determine if the 
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considered SA is already in cache or not, and to put it in the SAC when necessary. 

Doing those operations the statistics about cache misses and cache distribution over 

time can be computed. 

6.4.3. The simulation program 

The simulation is written in C and it works in the following way: 

• It reads one line from the TCP dump file. 

• It checks if a SA for the source and the destination IP addresses which has been 

read from the file has already been opened. If not, it opens a new one. If that SA 

has already been opened, it updates the SA usage counter and the timestamp of 

the last usage of that SA. The timestamps used here are the ones taken from the 

data file. 

• It checks if the SA is already in the SAC, if not two different things can happen: 

o there is a free entry in the SAC. In that case the free entry is used for 

loading the information related to the considered SA. 

o there is not a free entry in the SAC. In that case the least recently used 

SAC entry is found and stored out of the SAC. The information related 

to the considered SA are then loaded in the freed SAC position. 

• During all the operations the appropriate counters (cache misses, SA number,…) 

are kept up to date. 

The program source code can be found in Appendix B. 

6.4.3.1. Data structure used 

The main data structures used are two, one for the SAD and one for the SAC. 

Those two data structures are simply array of records. We choose to manage the data 

structures in the simplest possible way, so we choose to use unsorted arrays accessed in 

a sequential way. Obviously, for a real system better data structures and access methods 

should be studied, but discussing those topics is beyond the scope of this document. 

As stated before, the data structures are based on records (C structures), the first one is 

SADel which is designed to contain all the information related to a SA (the one we need 
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in our simulation), while the other is SACel that is designed to contain all the 

information related to each cached element. 

The SADel and the SACel structures are shown in Figure 6.13 and in Figure 6.14. 

The SADel structure contains the following fields: 

• sourceIP: an integer field used for storing the source IP address (as explained in 

section 6.2, the IP addresses were modified for privacy concerns); 

• destIP: an integer field used for storing the destination IP address; 

• cached: the position in the SAC where the current element of SAD is possibly 

stored; 

• counter: the SA usage counter. Once this field reach its maximum value (232), 

the SA have to be closed as explained in section 1.4.3; 

• time: the timestamp of the SA last usage. 

 SADel 

int   sourceIP;  
int   destIP; 
int   cached; 
unsigned  counter; 
double  time;  

 

Figure 6.13:SADel structure 

 SACel 

int   sourceIP; 
int   destIP; 
double  time; 
long  countUsed;  

 

Figure 6.14: SACel structure 

The SACel structure is composed by the following fields: 

• sourceIP: an integer field used for storing the source IP address, as in SADel; 

• destIP: an integer field used for storing the destination IP address, as in SADel; 

• time: the timestamp of the last usage of the cache position; 

• countUsed: a counter for computing the statistics on each cache entry reuse. 

As wrote before, the two data structure used in the simulation are array composed by 

the two C structures shown above. The SAD elements are contained in the SAD array 

defined in Figure 6.15 below and shown in Figure 6.17. 

 

struct SADel SAD[MAX_SA];  
 

Figure 6.15: SAD array definition 
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The SAC entries are contained in the SAC array defined in Figure 6.16 and shown in 

Figure 6.18. 

 

struct SACel SAC[CACHE_SIZE];  
 

Figure 6.16: SAC array definition 

 

int   sourceIP;  
int   destIP; 
int   cached; 
unsigned  counter; 
double  time  

SAD 

SADel 

SADel 

SADel 

. 

. 

. 

SADel 

SADel 

 

Figure 6.17: the SAD array 

 

int   sourceIP; 
int   destIP; 
double  time; 
long  countUsed;  

SAC 

SACel 

SACel 

SACel 

. 

. 

. 

SACel 

SACel 

 

Figure 6.18: the SAD array 

For the meaning of the CACHE_SIZE and the MAX_SA constants, please refer to 

section 6.4.3.2. 

A temporary variable called datagram is used in each program cycle. That variable is 

based on a data structure called dataT and shown in Figure 6.19. That variable is used to 

store the values read from the data file. 

 dataT 

double time; 
int sourceIP; 
int destIP; 
int sourceTCP; 
int destTCP; 
int bytes;  

 

Figure 6.19: dataT structure 

The fields of the dataT structure are explained below : 

• time: is the field used to store the datagram’s timestamp; 

• sourceIP: is the field used to store the datagram’s source IP address as explained 

for the SACel and the SADel structures; 

• destIP: is the field used to store the datagram’s destination IP address; 
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• sourceTCP: is the field used to store the originating TCP port; this field is 

unused in the program; 

• destTCP: is the field used to store the destination TCP port; this field is unused 

in the program; 

• bytes: this field stores the number of bytes of each datagram. At each value read 

from the file we decided to add 34, that is the number obtained by the length of 

the IP v.4 headers (20 bytes) and the length of the TCP headers (14 bytes). 

6.4.3.2. Simulation options 

The options related to each simulation are given through C constants (C define 

directive), the available options are: 

• CACHE_DIMENSION: defines the cache dimension (number of entries). 

• MAX_SA: defines the maximum number of SAs allowed on the host. 

• USE_FIN_PACKETS: defines whether or not to use the TCP FIN packets. The 

FIN packets are used to close the SAs when that constant is defined. 

• CLOSE_UNUSED: defines whether or not to use the timeout on the opened 

SAs. That option is enabled when this constant is defined. 

• CLOSE_TIME: defines the SA timeout to use (when the CLOSE_UNUSED 

option is active). 

• CHECK_TIME: defines the checking time for SAs exceeding the timeout (when 

the CLOSE_UNUSED option is active). 

• PRINT_INSTANT_STATISTICS: when defined it makes the program print the 

number of opened SAs and the number of cache misses on the standard output. 

• PRINT_CACHE_DISTRIB: when defined it makes the program print the 

distribution of the cache misses over 1s intervals. 

• PRINT_SA_DISTRIB: when defined it makes the program print the distribution 

of the opened and closed SAs over 1s intervals. 

• PRINT_CACHE_REUSE: when defined it makes the program print the number 

of reuse for each SAC element before its closure. 
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• PRINT_SA_REUSE: when defined it makes the program print the number of 

reuse for each SA before its closure. 

• QUICK_MODE: when defined it makes the program to threat the SAs as created 

with IKE phase 2 – quick mode (two SAs are created each time a new SA is 

needed for having a bi-directional communication channel). 

6.4.4. The results of the simulations 

In this paragraph the results obtained running the simulations varying the cache 

dimension are reported. Those results are presented through graphs representing the 

cache misses over time, and through the output provided by the program at the end of 

each simulation run. The numerical output of the program provides the following 

information: 

• Total number of datagrams analyzed: the total number of datagrams taken from 

the data file. This parameter is constant for all the simulation runs being that we 

use the same data file for all of them. 

• Average dimension of datagrams: this is the average dimension in byte of the 

analyzed datagrams. The dimension of each datagram is obtained adding 34 to 

the packet’s dimension read from the data file. Those 34 bytes are given by 20 

bytes of IP headers and 14 bytes of TCP headers. As a matter of fact the 

dimension of the headers are not reported in the data file. 

• Average data rate: this is the average throughput, obtained dividing the sum of 

the dimension of all the datagram passed through the system, by the ending time 

of the simulation. 

• Average connections managed per second: this parameters reports how many IP 

datagrams are managed in each second by the system and it is obtained dividing 

the number of datagrams passed through the system by the total simulation time. 

• Average reuse of each SA: this gives the average number of time that each SA is 

reused during its lifetime. 



Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 75 
 

 

• Total cache misses: this gives the total number of cache misses happened during 

the simulation run 

• Compulsory misses: this gives the number of unavoidable cache misses 

happened during the simulation run. The unavoidable cache misses are the ones 

happening the first time the SAs are used. 

• Avoidable cache misses: this gives the total number of avoidable misses 

happened during the whole simulation. With “avoidable misses” we mean the 

misses that can be avoided having a cache big enough for containing all the 

SAD entries. Those are the misses happening for each SA after it has been used 

for the first time. 

• Average reuse of each cache position before replacing: this gives the average 

number of times that each cache entry is reused before being discarded. 

In the following subsections the obtained results are shown. 

6.4.4.1. Not closing any SA 

In this case we report the results of the simulations ran considering 16, 32, 64, 128, 256, 

and 512-entry caches. In Figure 6.20, Figure 6.21, Figure 6.22, and Figure 6.23 are 

represented the results obtained with the last four cache dimensions as total cache 

misses over time, compulsory cache misses over time, and avoidable (total minus 

compulsory) cache misses over time. The other curve shown in each graph represents 

the number of SAs opened over time. 

Please note that in all those four figures, the curve representing the number of SAs 

overlaps the one representing the number of compulsory cache misses. 

Since the first part of the numerical results obtained here (the data rate, the SA reuse, 

the number of analyzed datagrams, and the number of connections managed per second) 

is always the same for each simulation run performed in this subsection, we will report 

it only in the first case shown. 



Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 76 
 

 

Here follow the numerical results obtained for a 16-enty cache: 
Total number of datagrams analyzed 1789994 
Average dimension of datagrams (34bytes of header):  170.36bytes 
Average data rate: 330.876kbit/s 
Average connections managed per second: 248.61 
Average reuse of each SA: 483.13 
 
Total cache misses: 798593 (44.61%) 
Compulsory misses: 3705 
Avoidable cache misses: 794888 (44.41%) 
Average reuse of each cache position before replacing 2.24 

 

Here follow the numerical results obtained for a 32-enty cache: 
Total cache misses: 382498 (21.37%) 
Compulsory misses: 3705 
Avoidable cache misses: 378793 (21.16%) 
Average reuse of each cache position before replacing 4.68 

 

In Figure 6.20 a graphic representation of the results obtained for a 64-entry cache is 

shown. The numerical results are shown below: 
Total cache misses: 124369 (6.95%) 
Compulsory misses: 3705 
Avoidable cache misses: 120664 (6.74%) 
Average reuse of each cache position before replacing 14.39 

 

Figure 6.20: simulation results over time with a 64-entry cache 
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In Figure 6.21 a graphic representation of the results obtained for a 128-entry cache is 

shown. The numerical results are shown below: 
Total cache misses: 25122 (1.40%) 
Compulsory misses: 3705 
Avoidable cache misses: 21417 (1.20%) 
Average reuse of each cache position before replacing 71.25 

 

Figure 6.21: simulation results over time with a 128-entry cache 

In Figure 6.22 a graphic representation of the results obtained for a 256-entry cache is 

shown. The numerical results are shown below: 
Total cache misses: 11892 (0.66%) 
Compulsory misses: 3705 
Avoidable cache misses: 8187 (0.46%) 
Average reuse of each cache position before replacing 150.52 
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Figure 6.22: simulation results over time with a 256-entry cache 

In Figure 6.23 a graphic representation of the results obtained for a 512-entry cache is 

shown. The numerical results are shown below: 
Total cache misses: 8056 (0.45%) 
Compulsory misses: 3705 
Avoidable cache misses: 4351 (0.24%) 
Average reuse of each cache position before replacing 222.19 

 

Figure 6.23: simulation results over time with a 512-entry cache 
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The obtained results show us that 16-entry or 32-entry caches are fairly not useful 

causing a too high number of avoidable cache misses. The differences between a 64-

entry cache and a 128-entry cache are quite high (the number of avoidable cache misses 

is divided by 5.6). Less differences can be obtained using a 256-entry cache: with 

respect to a 128-entry cache the number of avoidable cache misses is divided by 2.6. It 

seems that using a 512-entry cache gives very few benefits (with respect to a 256-entry 

cache) from the point of view of avoidable cache misses. 

6.4.4.2. Closing the SAs exceeding a 30 min. timeout 

In this case, as in the following ones, we report the results of the simulations done with 

64, 128, 256 entry caches only, being those the more significant ones. In Figure 6.24, 

Figure 6.25, and Figure 6.26 are shown the results obtained with those three cache 

dimensions as total cache misses over time, compulsory cache misses over time, and 

avoidable (total-compulsory) cache misses over time. The other curve shown in each 

graph represents the number of SAs opened over time. 

Since the first part of the numerical results obtained here (the data rate, the SA reuse, 

the number of analyzed datagrams, and the number of connections managed per second) 

is always the same for each simulation run performed in this subsection, we will report 

it only in the first case shown. 

In Figure 6.24 a graphic representation of the results obtained for a 64-entry cache is 

shown. The numerical results are shown below: 
Total number of datagrams analyzed 1789994 
Average dimension of datagrams (34bytes of header):  170.36bytes 
Average data rate: 330.876kbit/s 
Average connections managed per second: 248.61 
Average reuse of each SA (before closing): 421.77 
 
Total cache misses: 124369 (6.95%) 
Compulsory misses: 4244 
Avoidable cache misses: 120125 (6.71%) 
Average reuse of each cache position before replacing 14.39 
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Figure 6.24: simulation results over time with a 64-entry cache, considering a 30min. timeout on the 
unused SAs 

In Figure 6.25 a graphic representation of the results obtained for a 128-entry cache is 

shown. The numerical results are shown below: 
Total cache misses: 25122 (1.40%) 
Compulsory misses: 4244 
Avoidable cache misses: 20878 (1.17%) 
Average reuse of each cache position before replacing 71.25 
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Figure 6.25: simulation results over time with a 128-entry cache, considering a 30min. timeout on the 
unused SAs 

In Figure 6.26 a graphic representation of the results obtained for a 256-entry cache is 

shown. The numerical results are shown below: 
Total cache misses: 11892 (0.66%) 
Compulsory misses: 4244 
Avoidable cache misses: 7648 (0.43%) 
Average reuse of each cache position before replacing 150.52 

 

We can note that, using a 30 minutes timeout for the unused SAs, we obtain slightly less 

avoidable cache misses and the same number of total cache misses, with respect to the 

same cache dimensions without considering any closure policy. The number of 

compulsory cache misses grows due to the fact that some SAs which has been closed 

for having exceeded the timeout need to be re-opened later in the simulation (see also 

section 6.3). 

The fact that this policy is very efficient with respect to SA reusing and system’s 

resources is also shown by the average reuse of each SA that is very similar to the one 

obtained with no timeout set. 
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Figure 6.26: simulation results over time with a 256-entry cache, considering a 30min. timeout on the 
unused SAs 

6.4.4.3. Using the TCP FIN packets 

In Figure 6.27 and Figure 6.28 are represented the results obtained with a 128 and a 

256-entry caches. Those graphs show the number of total cache misses over time, the 

number of compulsory cache misses over time, and the number of avoidable (total-

compulsory) cache misses over time. The other curve shown in each graph represents 

the number of SAs opened over time. 

Since the first part of the numerical results obtained here (the data rate, the SA reuse, 

the number of analyzed datagrams, and the number of connections managed per second) 

is always the same for each simulation run performed in this subsection, we will report 

it only in the first case shown. 

The numerical results for a 64-entry cache are shown below:  
Total number of datagrams analyzed 1789994 
Average dimension of datagrams (34bytes of header):  170.36bytes 
Average data rate: 330.876kbit/s 
Average connections managed per second: 248.61 
Average reuse of each SA (before closing): 140.29 
 
Total cache misses: 128601 (7.18%) 
Compulsory misses: 12759 
Avoidable cache misses: 115842 (6.47%) 
Average reuse of each cache position before replacing 13.92 
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In Figure 6.27 a graphic representation of the results obtained for a 128-entry cache is 

shown. The numerical results are shown below: 
Total cache misses: 31804 (1.78%) 
Compulsory misses: 12759 
Avoidable cache misses: 19045 (1.06%) 
Average reuse of each cache position before replacing 56.28 

 

Figure 6.27: simulation results over time with a 128-entry cache, using the TCP FIN packets for closing 
the SAs 

In Figure 6.28 a graphic representation of the results obtained for a 256-entry cache is 

shown. The numerical results are shown below: 
Total cache misses: 19113 (1.07%) 
Compulsory misses: 12759 
Avoidable cache misses: 6354 (0.35%) 
Average reuse of each cache position before replacing 93.65 

 

The policy of using the TCP FIN packet for deciding whether to close a SA seems to be 

not very efficient. It allows a slightly diminishing of the avoidable cache misses due to 

the lower number of opened SAs at a given time, but it causes a dramatic increase of the 

compulsory cache misses due to the fact that some SAs closed for having received a 

TCP FIN packet often need to be reopened. The bad behavior provided by the usage of 

this technique is also confirmed by the average reuse of each SA before being closed: in 
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this case the result obtained is really different from the one obtained with no closure 

policy or with the closure policy based on a timeout. 

 

Figure 6.28: simulation results over time with a 256-entry cache, using the TCP FIN packets for closing 
the SAs 

 

6.4.4.4. Closing the SAs exceeding a 30 min. timeout and using the TCP FIN 

packets 

In Figure 6.29 and Figure 6.30 are displayed the results obtained with a 128 and a 256-

entry caches. Those graphs show the number of total cache misses over time, the 

number of compulsory cache misses over time, and the number of avoidable (total-

compulsory) cache misses over time. The other curve shown in each graph represents 

the number of SAs opened over time. 

Since the first part of the numerical results obtained here (the data rate, the SA reuse, 

the number of analyzed datagrams, and the number of connections managed per second) 

is always the same for each simulation run performed in this subsection, we will report 

it only in the first case shown. 
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The numerical results for a 64-entry cache are shown below:  
Total number of datagrams analyzed 1789994 
Average dimension of datagrams (34bytes of header):  170.36bytes 
Average data rate: 330.876kbit/s 
Average connections managed per second: 248.61 
Average reuse of each SA (before closing): 135.27 
 
Total cache misses: 128601 (7.18%) 
Compulsory misses: 13233 
Avoidable cache misses: 115368 (6.45%) 
Average reuse of each cache position before replacing 13.92 

 

In Figure 6.29 a graphic representation of the results obtained for a 128-entry cache is 

shown. The numerical results are shown below: 
Total cache misses: 31804 (1.78%) 
Compulsory misses: 13233 
Avoidable cache misses: 18571 (1.04%) 
Average reuse of each cache position before replacing 56.28 

 

Figure 6.29: simulation results over time with a 128-entry cache, when a 30min. timeout on the unused 
SAs is set and using the TCP FIN packets for closing the SAs 

In Figure 6.30 a graphic representation of the results obtained for a 256-entry cache is 

shown. The numerical results are shown below: 
Total cache misses: 19113 (1.07%) 
Compulsory misses: 13233 
Avoidable cache misses: 5880 (0.33%) 
Average reuse of each cache position before replacing 93.65 

 



Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 86 
 

 

In this case are again pretty evident the bad effects caused by closing the SAs basing on 

the TCP FIN packets. This technique should never be used. 

 

Figure 6.30: simulation results over time with a 256-entry cache, when a 30min. timeout on unused SAs 
is set and using the TCP FIN packets for closing the SAs 

6.4.4.5. Conclusions 

In all the four examined cases the results about the avoidable cache misses are very 

similar, however obtained with different combinations of total and compulsory misses. 

The data about the reuse of each SAC element before being discarded is different in the 

four considered cases, strictly depending it on the SA reuse (see section 6.3 for further 

considerations about that topic). 

Consideration about the number of avoidable cache misses leads us to prefer the SAC to 

be composed of 128 elements (16kb) or of 256 elements (32kb). Further considerations 

can be done also considering the SA creation phase, as reported in section 6.4.7. 

6.4.5. Reuse of each cache entry 

Before proceeding it is really important to verify if we can obtain any benefits caching 

the SAs. This can be done by evaluating the data about the reuse of each cache entry. As 
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a matter of fact we can obtain very few cache misses, but, if each cache element were 

reused very few times, we would have no real benefits using that cache. 

In the results of the simulations (section 6.4.4) it is reported the average reuse of each 

cache entry before being discarded. From that data we can see that using a cache seems 

to be a very good idea. As a matter of fact, in each considered case, each cache entry is 

used many times (in average 71 times for a 128-entry cache and 150 for a 256-entry 

cache when no SA closing policy has been adopted). 

The reuse of each cache entry is shown in Figure 6.31 (128-entry cache and no timeout), 

Figure 6.32 (256-entry cache and no timeout), and Figure 6.33 (128-entry, 30 minutes 

timeout). In those graphs each number shown on the abscissas axe represents a cache 

entry replace. For example, the number 1 on that axe represents the first cache 

replacement occurred. The numbers shown on the ordinates axe represent the number of 

times each entry had been reused before a replacement. 

The different shapes of the three graphs are due to the different order of the 

replacements obtained considering different cache sizes. The different number of bars 

shown in those graphs is due to the different number of cache replacements obtained 

considering different cache dimensions. 

 

Figure 6.31: reuse of each cache entry before being discarded on a 128-entry cache 
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Figure 6.32: reuse of each cache entry before being discarded on a 256-entry cache 

 

Figure 6.33: reuse of each cache entry before being discarded on a 128-entry cache, when a 30min. 
timeout on the unused SAs is set 

From those figures we can also note that there are some SAs remaining in the cache for 

a very long time, having a very high reuse. 
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6.4.6. Using a different cache replace policy 

We tried using a random replace policy ([P-H] , pp. 380-402) instead of the LRU one 

and the results we obtained was considerably worse. This confirm us that there really is 

a temporal locality that can be exploited using the LRU replacing policy and an 

adequate number of cache elements. 

6.4.7. Taking into account the SA creation phase 

Since the data files we have do not contain any data about SAs creation, the results 

shown in the previous section are about a system where all the SAs are supposed to 

have already been created. 

Looking at the diagrams which show the distribution of the newly opened SAs and 

which are reported in section 6.3 (Figure 6.5, Figure 6.6, and Figure 6.7), we could see 

that the creation of new SAs is pretty uniformly distributed over time. This means that, 

for simulation purposes only, we can try reserving a certain number of entries in the 

SAC for the creation of new SAs. Looking at the diagrams it seems that reserve 20 

cache position could be a good (and probably conservative) choice. This is done just for 

causing a SAC space diminishing like the one that would have been caused by the 

creation of new SAs during the normal working of a real system, since this operation 

also uses the SAC memory space. The simulation can be run again using 108 and 236 as 

SAC dimensions.  

In Figure 6.34 are shown the results obtained with a 108-entry cache without using any 

SA closing policy. The average results follow here: 
Total number of datagrams analyzed 1789994 
Average dimension of datagrams (34bytes of header):  170.36bytes 
Average data rate: 330.876kbit/s 
Average connections managed per second: 248.61 
Average reuse of each SA: 483.13 
 
Total cache misses: 34625 (1.93%) 
Compulsory misses: 3705 
Avoidable cache misses: 30920 (1.73%) 
Average reuse of each cache position before replacing 51.70 
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Figure 6.34: simulation results over time with a 108-entry cache 

In Figure 6.35 are shown the results obtained with a 236-entry cache without using any 

SA closing policy. The average results follow here: 
Total cache misses: 13027 (0.73%) 
Compulsory misses: 3705 
Avoidable cache misses: 9322 (0.52%) 
Average reuse of each cache position before replacing 137.41 

 

Figure 6.35: simulation results over time with a 236-entry cache 
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The results obtained for the 236-entry cache are pretty much the same of the ones 

obtained with the 256-entry cache, while the diminishing of the number of entries 

influences more the 128-entry cache. As a matter of fact throwing out 20 entries form 

the 128-entry cache, we left the 15,6% of the elements, while for the 256-entry cache 

we have a reduction of only the 7.8%. 

6.4.8. Considering the SAs created as in “IKE Phase 2 – quick mode” 

In the previously discussed simulation, we did not care about the fact that, when IKE 

Phase 2 quick mode is performed, two SAs are created at the same time (see section 

3.4.2). Those two SAs are created to accomplish the needing of bi-directional 

communications. The results shown before was obtained creating each SA the first time 

it was needed, without considering the communications in the opposite direction. 

In this subsection we show the results obtained running a slightly modified version of 

the simulation program. Here, when a new SA is opened, another SA between the same 

two IP addresses but in the opposite direction is automatically opened too. 

We have to note that in this section we are not adding any information about the SA 

creation phase (such as functionalities or timings) to the simulation, we only force the 

system to a slightly different usage of the cache that should be closest to the real one. 

The obtained results (without considering any SA closure policy) are shown below. 

Considering a 64-entry cache we obtain: 
Total cache misses: 124852 (6.97%) 
Compulsory misses: 3806 
Avoidable cache misses: 121046 (6.76%) 

 

Considering a 108-entry cache we obtain: 
Total cache misses: 34890 (1.95%) 
Compulsory misses: 3806 
Avoidable cache misses: 31084 (1.74%) 

 

Considering a 128-entry cache we obtain: 
Total cache misses: 25326 (1.41%) 
Compulsory misses: 3806 
Avoidable cache misses: 21520 (1.20%) 
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Considering a 256-entry cache we obtain: 
Total cache misses: 12071 (0.67%) 
Compulsory misses: 3806 
Avoidable cache misses: 8265 (0.46%) 

 

We can note that the obtained results about the cache misses are pretty much the same 

as obtained in the previous sections. We can note that the number of compulsory misses 

is a little bit increased here. This is due to the fact that some SAs that would not need to 

be opened are anyway opened. As a matter of fact, in the previous simulations, only the 

needed SAs was opened, while here a pair of SAs is anyway opened whether or not a 

bi-directional channel is needed. 

The results about the number of created SAs when no closure policy is adopted are also 

pretty much the same as the ones shown in section 6.3. That distribution is displayed in 

Figure 6.36. The only data which slightly change are the ones about the reuse of the 

SAs and of the cache entries. As a matter of fact, using this SA creation procedure, we 

force the system to open some not-needed (and not used) SAs, making the SA reuse and 

the cache entry reuses to lower. For example the average SA reuse goes from 483 to 

470. 

Since the SAs are created in pairs, an alternative cache structure can be thought. We can 

think about using cache entries which can contain the information of a pair of SAs each. 

That solution would give no advantage in our system, being that the information 

contained in each single-SA cache entry (mainly the AES key and the IV) must anyway 

be contained in the new cache structure too. Therefore we would obtain no memory 

saving and we would lower the flexibility of the cache. That technique would also 

introduce a further complication for managing the ISAKMP SAs that are bi-directional 

and  do not need a double cache entry. 
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Figure 6.36: SA creation distribution over 1s intervals when IKE Phase 2 quick mode procedure is used 
for opening the SAs 

6.5. Simulating the delay introduced by the crypto- processor 

To simulate the delay introduced by the crypto-processor, we need to compute the 

delays introduced by the various operations which need to be performed. These 

operations are: the data transfer between the host and the smart card, the encryption or 

decryption of the data, the time needed for dealing with an element not present in the 

SAC or with an element present in the SAC, the storing time of a SAC element. Those 

delays will then be used in the simulation program to compute the time that each packet 

needs to pass through the system. 

6.5.1. Computation of the delays 

6.5.1.1. Host–smart card data transfer 

As stated before, we suppose to use a 32-bit standard 66MHz PCI bus as hardware 

interface between the host and the crypto-processor. Therefore we will use the data 

taken by the PCI specification to compute the communication channel delays. 
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The PCI bus in burst mode needs one cycle for the address and n divided by 4 cycles for 

the data, where n is the number of bytes to be transferred. Being the bus at 66MHz, each 

cycle takes 1 over 66*106 that is 1.515*10-8s. We consider as initial time one cycle, 

since there should be no conflict on the data bus. As a matter of fact the bus is dedicated 

to the crypto processor and all the transfer requests are sequentially done. 

The time we need to transfer something on the bus, is given by: 
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where: 

• Dinitial is the time needed to start the communication. We can assume for it the 

value of 1.515*10-8s. 

• b is the number of bytes we have to transfer: this parameter can be obtained by 

the command table and in each case we are considering here it is given by the 

number of data byte plus 4 (one 32-bit words of command code and options). 

The first time the SA is used (depending on the mode used for encryption) the 

IV should also need to be loaded in the smart card. In that case 16 (equivalent to 

128 bits) need be added to the data dimension. 

• tcycle is the time needed by a PCI bus cycle that is, as stated before, 1.515*10-8s. 

The delay introduced by the data transferring is given by: 
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When the data to be encrypted or decrypted are to be transferred through a 

symmEncrypt or a symmDecrypt command, a further 32-bit word of command code 

must be added, since those command are of the C format (see section 4.2.4). In those 

cases the previous formula become: 

                                                 
7 The symbol  �x� means “the smallest integer greater than or equal to x” This is equivalent to the C 

function called ceil. 
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6.5.1.2. Encryption/decryption 

This delay can be computed considering the worst-case-time needed to process a data 

block, the number of blocks to be processed, and a fixed initial delay. The initial delay 

is needed for setting up the AES hardware with the key to be used (key enrolling). We 

can use a formula like the following one: 
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where: 

• Dsetup is the initial fixed delay 

• c is the number of bytes to be processed. Here we consider the worst possible 

case, so we also take into account also the IP header dimension: this corresponds 

to consider the ESP IPSec protocol used in tunnel mode. 

• tenc is the time we need for the encryption of one data packet. 

Looking at the AES fast hardware implementation studies done at ALaRI (see [MAC-

MAR] for more details), we can assume the following values for the previous variables: 

Dsetup: 17 clock cycles * cycle time 

tenc: 22 clock cycles * cycle time 

The decryption process is slower than the encryption one and for that reason we choose 

to use the data relative to the slowest process. 

Considering the same studies on AES we can see that running the AES hardware at 

50MHz we can obtain a throughput of 290Mbit/s with a continuous flux of information 

(i.e. giving to that hardware a continuous flux of data related to the same AES key). In 

our system the flux will not be continue. Therefore we will have to choose a higher 

clock rate than 50MHz. The values for Dsetup and tenc considering various clock rates are 

reported in Table 6.4. 



Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 96 
 

 

Clock rate 50MHz 55MHz 60MHz 70MHz 

Dsetup 3.4*10-7 3.09*10-7 2.83*10-7 2.42*10-7 

tenc 4.4*10-7 4*10-7 3.67*10-7 3.14*10-7 

Table 6.4: encryption timings for different AES hardware clock rates 

6.5.1.3. Element present in the SAC 

In this case the delay introduced is very low. If a SA element were cached, the SAC 

position number would be stored in the SAD, that would anyway be consulted. The 

delay can be considered to be 5*10-9 sec. 

6.5.1.4. Element not present in the SAC 

In this case there are two different possibilities: there is a free SAC slot or there is not a 

free SAC slot. 

In the former case, the delay is given by the sum of the time needed to transfer the SA 

data (from the host to the crypto-processor) and of the time needed to decrypt the key 

and to check the CRC. In the latter case, we must also add the store time of the 

discarded SAC element (the one that need to be stored out for freeing a memory 

position in the crypto-processor). We consider that our system uses the simple 16-bit 

CRC algorithm to check the consistency of the data stored out of the smart card. The 

CRC is computed over the contents of a SAC element, then the result is encrypted with 

the key and stored on the host. The time needed for comparing the CRC result with the 

stored CRC can be neglected, since that operation is performed on two bytes only. 

We have: 
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where: 

• Dsetup and tenc are the same ones considered in the computation of the encryption 

delay. 

• ke and kd are respectively the key length (bit) of the SA to be stored out from the 

crypto-processor and the key length of the SA to be put in the SAC. Both the ke 

and the kd values are considered to be 256 (the maxim length of an AES key). 

The 16 bits added in the formula are the ones related to CRC result. 

• b is the number of bytes to be exchanged between the host and the crypto 

processor to load the information about a SA. 

• Dcrc is the delay introduced by the data “hashing” function chosen, the CRC. The 

CRC needs to operate on b-2 bytes, since 2 bytes are generated by the CRC 

itself: 

tbbD crccrc *)2()( −=  

In the previous formula tcrc is the time we need to apply CRC to a byte. In CRC 

hardware  implementations a throughput of 200Mbit/s can be easily reached, so 

that tcrc can be considered to be 8 over 200*106 that is 4*10-8. 

The Dtrans(0) delay is introduced to take into account that a store request must be done 

by the host through the getSAinfo command. 

Considering all the timings introduced above, the Dmiss and Dstore formulas become: 
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b can be assumed to be 66 (64 bytes taken from the SAC plus 2 of CRC). The CRC is 

applied only to the 64 bytes of the SAC entry. The two delays can now be considered to 

be: 
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As stated before, when there is no free slot in the SAC, the delay is given by 

Dmiss+Dstore. 

6.5.1.5. Conclusions about the delays 

Considering the results obtained in the previous subsections, we can state that: 

• Each operation on the smart-card introduces a delay given by: 

2*Dtrans+Denc 

• Each cache access introduces a fixed delay Dacc, 

• Each cache miss introduces an additional delay of 

o Dmiss, if there is a free slot in the SAC 

o Dmiss+Dstore, if there is no room for other SA in the SAC and a SA have 

to be swapped out 

When the value of the parameters has been fixed, Dmiss, Dstore, and Dacc are constant. 

Dtrans and Denc depend on the number of bytes contained in the datagram to be 

processed. 

6.5.2. Designing the simulation 

The simulation we need to write here has still to provide a trace of the cache usage, but 

the computation of the delays introduced by the various operations done in the system 

must also be taken into account. In the previous section we explained what parts of the 

system arise those delays and how to compute them, therefore our simulation will have 
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to use those information to compute the time needed by each datagram to pass through 

the system, basing on the operations to be performed on that datagram. 

6.5.3. The simulation program 

The C program used for the simulation including the delays is reported in Appendix C. 

It is based on the one used in the section 6.4 and explained in the subsection 6.4.2. 

6.5.3.1. The main data structures 

The SAC and SAD data structures we use here are the same ones we used for the 

simulation without delays. We explained them in section 6.4.3.1 and we showed them in 

Figure 6.17 and in Figure 6.18.  

The dataT structure we use here was slightly modified to store some additional 

information we need to compute the delays. The new dataT structure is shown in Figure 

6.37. 

 dataT 

double time; 
double theorTime; 
int sourceIP; 
int destIP; 
int sourceTCP; 
int destTCP; 
int bytes;  

 

Figure 6.37: the dataT structure 

The new field added here is called theorTime and it is used to store the theoretical time 

at which that datagram would have been processed if there were no delays due to IPSec 

(the communication on the system where the data was taken is based on IP only). The 

time field is now used to store the real timestamp assigned to the considered datagram. 

As a matter of fact the original timestamps can need some modifications. This is due to 

the fact that the delays introduced by the system can make the datagrams to take longer 

processing times than the ones allowed by the original timestamps of the successive 

datagrams.  
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6.5.3.2. How the simulation program works 

As stated before, the simulation we considered here works pretty much in the same way 

of the one described in section 6.4.3.1. Here the main differences are that the datagram 

processing delays are added for each executed operation. The delays are computed 

using the formulas explained in section 6.5.1. 

When a SA is already cached the delay introduced is given by the data transfer between 

the host and the crypto-processor and by the encryption/decryption time of the data. 

When a SA is not cached also the delays due to the cache miss are added to the previous 

ones. If the sum of the introduced delays added to the datagram’s timestamp is higher 

than the next datagram’s timestamp, the latter is delayed. Therefore it takes a new 

timestamp composed by the previous datagram’s timestamp plus the processing time 

and a little interval of time between the two packets. 

In this way we are able to compute the throughput that can be obtained by the system. 

That throughput can be compared with the theoretical throughput, obtained considering 

the original timestamps read in the data file. The throughput is computed basing on time 

intervals set by the PRINT_THROUGHPUT_DISTRIB C constant. That constant has 

been set to 0.25s. Therefore, the real throughput is computed each time an interval of 

time higher that 0.25s is detected between the timestamp of the new datagram 

considered and a timestamp stored in memory (corresponding to the last throughput 

computation). The throughput is computed as the number of bytes processed in that 

interval divided by the interval length. For obtaining the theoretical throughput, the 

same operations are done considering the theoretical timestamps of the same datagrams. 

An average value of the throughput is computed at the end of the simulation, while 

instant values can be saved in a file for successive computations. 

Here the results are put in separate files allowing to obtain more results per simulation 

run. The files that can be obtained are described in the following section. 
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6.5.3.3. Simulation parameters 

The simulation options can be set through C constants (C define directive). The 

available options are: 

• CACHE_DIMENSION: defines the cache dimension. 

• MAX_SA: defines the maximum number of SAs allowed on the host. 

• USE_FIN_PACKETS: defines whether or not to use the TCP FIN packets. The 

FIN packets are used when this constant is defined. 

• SCALE_TIME: this parameter is used for scaling all the timestamps to obtain the 

desired theoretical throughput. For reaching an average throughput around 

200Mbit/s we have to set this parameter to 0.00161. 

• CLOSE_UNUSED: defines whether or not to use the a timeout on the opened 

SAs. The option is enabled when this constant is defined. 

• CLOSE_TIME: defines the SA timeout to use (when the previous option is 

active). 

• CHECK_TIME: defines the checking time for SAs exceeding the timeout. 

• MIN_DISTANCE: defines the minimum time that should pass between two 

successive datagrams. This parameter is used when a datagram has to be 

delayed; in that case the datagram’s timestamp is obtained as the finishing 

processing time of the precedent datagram plus MIN_DISTANCE. This 

parameter is set to 1*10-12s. 

• PRINT_CACHE_DISTRIB: when defined it makes the program save the 

distribution of the cache misses over 0.25s intervals into the “cacheDistrib.txt” 

file. That file contains the timestamps in the first column, the number of  total 

cache misses in the second one, and the number of compulsory cache misses in 

the third one. 

• PRINT_THROUGHPUT_DISTRIB: when defined it makes the program save the 

throughput obtained by the system and computed over the intervals specified by 

the constant itself into the “throughput.txt” file. That file contains the 
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timestamps in the first column and the throughput, that correspond to that 

timestamps, in the second column. 

• CHANNELL: it is the corresponding to the tcycle parameter described in section 

6.5.1.1. Here is set to 1.515*10-8s. 

• CHANNELL_INITIAL: it is the Dinitial parameter used in section 6.5.1.1. Here is 

set to 1.515*10-8s. 

• CACHED_DELAY: it is the delay introduced by a SA that is already in cache as 

described in section 0. Here this constant is set to 5*10-9 

• ENC_TIME: it is the value corresponding to the tenc parameter described in 

section 6.5.1.2 (see the following section for indication about the value set here). 

• ENC_SETUP: it is the value corresponding to the Dsetup parameter described in 

section 6.5.1.2 (see the following section for indication about the value set here). 

• SAINFO_LEN: it is the number of bytes to be transferred between the host and 

the crypto-processor when a cache miss or a store operation occurs. The 

parameter is set to 66 bytes as described in section 6.5.1.4. 

• KEY: it is the number of blocks to be encrypted. The value 3 is obtained by the 

two blocks which compose the key, plus a block for the CRC result as described 

in 6.5.1.4. 

• CRC_TIME: it is the time we need to compute the CRC over a byte. As 

described in section 6.5.1.4, we can choose a value of 4*10-8s for that parameter. 

• QUICK_MODE: when defined it makes the program to threat the SAs as created 

with IKE phase 2 – quick mode (two SAs are created each time a new SA is 

needed for having a bi-directional communication channel). 

6.5.4. The results of the simulations 

All the simulations here were run setting the SCALE_TIME parameter to 0.00161 to 

obtain a theoretical average throughput (on all the datagrams analyzed) around 

200Mbit/s (200.7Mbit/s). 
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We have to take into account that in this phase we scaled the timestamps to reach the 

desired throughput, but, in a real system, that throughput is usually reached in a 

different way. There usually is a higher number of opened connections (SAs, in our 

case). This may introduce some approximations from the point of view of SA managing 

and caching. Probably a better estimation of these effects could be done only using data 

coming from a real 200Mbit/s system. 

Analyzing the results of the simulations we will see that the encryption time parameters 

can influence the cache dimension we need. A cache dimension that guarantees the 

desired throughput using a certain clock rate for the AES hardware can fail providing 

the same performance using a lower clock rate. 

The theoretical throughput shown in each graph of this section is obtained running the 

simulation program with all the timing parameters set to 0. This would be the 

throughput of the system when no delay were introduced by the crypto system (or if the 

delays are smaller than the minimum interval between successive datagrams). 

The throughput is everywhere computed over 0.25s intervals8: using different interval 

widths can give different throughput curve shapes, always leading to the same results, 

since the two curves plotted in the graphs are obtained using the same value for this 

parameter. 

6.5.4.1. Running the AES hardware at 50MHz 

As explained in section 6.5.1.2, considering a 50MHz clock for the AES hardware, the 

ENC_TIME and ENC_SETUP parameters have to be respectively set to 4.4*10-7 and to 

3.410-7. 

The throughput obtained for a 64-entry cache, and for a 256-entry cache is reported in 

Figure 6.38 and in Figure 6.39. From that figures can be pointed out that the cache 

dimensions influence very few the throughput of the system in this situation. As a 

matter of fact the two graphs differ very few while the cache dimension in the two cases 

differ for a factor of four. We can state that in this case the cache dimension parameter 

                                                 
8 The throughput is always obtained computing the number of bytes going through the system over an 

interval of time. 
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“is dominated” by the encryption time parameter that partially hides the effects of the 

former parameter. 

No one of the cache dimensions here considered can guarantee the desired throughput 

with such a slow cryptographic hardware. 

 

Figure 6.38: throughput obtained using a 64-entry cache and an AES hardware running at 50MHz 
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Figure 6.39: throughput obtained using a 256-entry cache and an AES hardware running at 50MHz 

6.5.4.2. Running the AES hardware at 55MHz 

As explained in section 6.5.1.2, considering a 55MHz clock for the AES hardware, the 

ENC_TIME and ENC_SETUP parameters have to be respectively set to 4*10-7 and to 

3.09*10-7. 

The throughput obtained for a 64-entry cache, for a 128-enty cache, and for a 256-entry 

cache is respectively reported in Figure 6.40, in Figure 6.41 and in Figure 6.42. From 

that figures it can be pointed out that using a 64 cache does not allow to obtain the 

required throughput. A 128-entry and a 256-entry cache seem allowing the system to 

almost provide the desired throughput. This can also be seen by the numerical results 

obtained from the simulations: the average throughput obtained for the 64-entry cache is 

188.65Mbit/s, the one obtained for the 128-entry cache is 198.10Mbit/s, and the one 

obtained for the 256-entry cache is 199.15Mbit/s. The average theoretical throughput is 

200.70Mbit/s.  

The performance would probably be more safely guaranteed with a higher AES 

hardware clock. 
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Figure 6.40: throughput obtained using a 64-entry cache and an AES hardware running at 55MHz 

 

Figure 6.41: throughput obtained using a 128-entry cache and an AES hardware running at 55MHz 
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Figure 6.42: throughput obtained using a 256-entry cache and an AES hardware running at 55MHz 

6.5.4.3. Running the AES hardware at 60MHz 

As explained in section 6.5.1.2, considering a 60MHz clock for the AES hardware, the 

ENC_TIME and ENC_SETUP parameters have to be respectively set to 3.67*10-7 and to 

2.83*10-7. 

The throughput obtained for a 64-entry cache, for a 128-entry cache, and for a 256-enty 

cache is respectively reported in Figure 6.43, in Figure 6.44, and in Figure 6.45. From 

that graphs we can point out that using a 60MHz clock rate for the AES hardware we 

can reach the desired performance using a 128-entry cache. A 64-entry cache still 

cannot be used. 

The numerical data for the throughput here obtained are 196.35Mbit/s for the 64-entry 

cache, 200.63Mbit/s for the 128-entry cache, and 200.65Mbit/s for the 256-entry cache. 
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Figure 6.43: throughput obtained using a 64-entry cache and an AES hardware running at 60MHz 

 

Figure 6.44: throughput obtained using a 128-entry cache and an AES hardware running at 60MHz 
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Figure 6.45: throughput obtained using a 256-entry cache and an AES hardware running at 60MHz 

6.5.4.4. Running the AES hardware at 70MHz 

As explained in section 6.5.1.2, considering a 70MHz clock for the AES hardware, the 

ENC_TIME and ENC_SETUP parameters have to be respectively set to 3.14*10-7 and to 

2.42*10-7.  

The throughput obtained for a 64-entry cache and for a 128-entry cache is respectively 

reported in Figure 6.46 and in Figure 6.47. Here it can be seen that running the AES 

hardware at 70MHz, a 64-entry cache can be successfully used too. The numerical data 

for the throughput obtained with that cache dimension is 200.69Mbit/s. 
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Figure 6.46: throughput obtained using a 64-entry cache and an AES hardware running at 70MHz 

 

Figure 6.47: throughput obtained using a 128-entry cache and an AES hardware running at 70MHz 
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6.5.4.5. Conclusions about the results obtained with this simulation 

From the results obtained in the previous sections, we can point out that the cache 

dimension we should use to obtain the required performance, strictly depends on the 

clock rate used for the AES hardware. 

The AES clock and the cache dimension should be chosen also taking into account that 

a performance margin is needed for safely guarantee the results with respect to all the 

approximations we introduced writing the simulation.  

Using a 64-entry cache with a 70MHz AES hardware seems not to be a good idea, both 

for the higher clock rate to be used and because using a 64-entry cache can left less 

margin for the SA creation process (as explained in section 6.4.7). 

The better solutions seem to be two: the one that is composed by a 128-entry cache 

coupled with a 60MHz AES hardware or the one composed by a 256-entry cache 

coupled with a 60MHz AES hardware. Since the results obtained with those two cache 

dimensions are almost the same and that the former solution needs half the memory 

needed by the latter solution, the cache dimension to be chosen should be the first one. 

6.5.4.6. Using a 30 min. timeout on the unused SAs 

Using a timeout on the unused SAs as explained in section 6.4.4.2, does not change the 

results about the throughput presented above. As a matter of fact, that timeout is not 

useful here, because the simulation last for less than 12s. The timeout would have to be 

scaled by the same factor of the timestamps, but this would mean to set a timeout of 

only 2.9s, that would not have any meaning in a real system. As we saw in the previous 

sections, introducing that kind of SA closure policy does not have bad effects on cache 

misses (as a matter of fact it lower the number of avoidable misses), so it could not have 

bad effects on throughput here. 

No results considering the TCP FIN packets are shown here, considering that solution 

not good from the point of view of SA reuse. 

6.5.4.7. Considering some cache position reserved for SA creation 

As done in section 6.4.7, we consider here the cache dimension slightly diminished for 

taking into account the cache positions that in a real system would be used for creating 
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the SAs. The throughput obtained with a 108-entry cache (simulating a 128-entry cache 

with 20 busy cache positions) and a 60MHz AES hardware is shown in Figure 6.48. As 

we can see from that figure, the system is still able to support the desired throughput. 

 

Figure 6.48: throughput obtained using a 108-entry cache and an AES hardware running at 60MHz 

6.5.5. Considering the behavior of IKE Phase 2 in quick mode 

In the previously shown simulations, we did not care about the fact that, when IKE 

Phase 2 - quick mode is applied, two SAs are created at the same time (see sections 

3.4.2 and 6.4.8).  

In this subsection we will show the results obtained running a slightly modified version 

of the simulation program. In that version of the simulation program, when a new SA is 

opened, another SA between the same two IP addresses but in the opposite direction is 

automatically opened too. 

Also in this case, no information about the time needed for the creation of the security 

associations are introduced. 

The results obtained here are pretty much the same as the ones shown before. A 

graphical representation of the results obtained considering a 60MHz AES hardware, is 
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shown in Figure 6.49, Figure 6.50, and in Figure 6.51. In those figures a 128-entry 

cache, a 256-entry cache and a 108-entry cache are respectively considered. The 

throughput obtained for a 128-entry cache is 200.63Mbit/s. With a 256-entry cache we 

can obtain a throughput of 200.65Mbit/s. 

 

Figure 6.49: throughput obtained using a 128-entry cache and an AES hardware running at 60MHz – SA 
creation as in IKE Phase 2 Quick Mode 
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Figure 6.50: throughput obtained using a 256-entry cache and an AES hardware running at 60MHz – SA 
creation as in IKE Phase 2 Quick Mode 

 

Figure 6.51: throughput obtained using a 108-entry cache and an AES hardware running at 60MHz – SA 
creation as in IKE Phase 2 Quick Mode 
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6.6. Adding the delays due to the SA creation phase  

In this section we analyze the possibility to add some information about the delay 

introduced by the SA creation phase (IKE phase 1 and 2) to the simulation. The fact that 

the data we have do not contain any information about that phase (see section 6.2), 

makes the work done here to be less accurate than in the previous sections. 

Considerations about the way the phase 1 of IKE is performed, lead us to consider the 

IKE phase 2 only. This means we are supposing that the IKE phase 1 has already been 

performed so that the ISAKMP SAs have already been created. Unfortunately, not 

having real data about the creation of the ISAKMP SAs, introducing guesses on the 

phase 1 would have introduced too much uncertainty without giving any (useful) 

additional information about cache usage. The ISAKMP SAs have a maximum lifetime 

of 24 hours (see [NIST-2]), therefore supposing the SAs to have already been created 

can be a not so bad choice. IKE phase 1 is based on public-key cryptography, a 

component of our system that does not use cache. In IKE phase 2 public-key 

cryptography is still used for Diffie-Hellman exchanges, but the cache is also used to 

store the “half generated” keys and the ISAKMP SAs information. With “half-generated 

key” we mean the Diffie-Hellman secret that must be stored while waiting for the other 

peer’s Diffie-Hellman payload. 

In the following subsection a description of the delays that must be considered building 

this simulation is given. 

6.6.1. Description of the delays introduced by the IPSec SA creation phase 

6.6.1.1. Diffie-Hellman key generation delays 

The delay introduced by this operation can be considered to be around 400µs for each of 

the two needed phases (the Diffie-Hellman secret generation and the key completion 

operations). The time needed for the ECC curve computation (assumed to be around 

100µs) must be also added to that delay. In [CA-PO], better results are given for 

hardware-software implementations of the key generation algorithm, but only 

considering 155-bit-wide ECC keys. Here we consider a 600-bit-wide ECC key. 
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Therefore we consider the time needed for the key generation to be the longest time 

taken by the software implementation of the algorithm running with a 155-bit ECC key 

(400µs). 

The key computation delay described above, should be considered twice for each SA 

creation process, being that for each IKE phase 2 quick mode process, a pair of 

independent SAs is created and that those two SAs have keys derived from different key 

material. The ECC curve computation must be considered only once for each of the two 

phases, since the two key generations previously discussed are performed on the same 

curve and one after the other. 

6.6.1.2. Transferring the public-key material on the bus 

Each time the command to generate a key is invoked, we suppose that the ECC 

parameters have to be set. Considering a 600-bit ECC key, we need to transfer 526 

bytes on the data channel between the host and the crypto-processor (see Table 4.10). 

Basing on what stated in section 6.5.1.1, to transfer 526 bytes we need 

1.515*10-8*(1+1+132)=2*10-6s 

When the key-completion command is invoked, the delay introduced by transferring the 

key material received by the other peer should also be considered. 

6.6.1.3. The network delays 

The delays that need to be considered in this phase are composed not only by the ones 

introduced by the crypto-system (key generation, cache misses, …), but also by the 

network delays. As a matter of fact the SA creation phase is based on some exchanges 

between the two peers who are negotiating a pair of SAs as described in section 1.4.3. 

The minimum number of ask/reply exchanges that must be considered here are two (a 

message from the initiator to the responder, a reply, and another message from the 

initiator to the responder), since we are considering only the phase 2 of IKE. It can be 

easily noted that the delays introduced by the network are pretty much not predictable 

and are the ones that have the main impact on the SA creation time (they are higher than 

the ones introduced by the crypto-system, often by some order of magnitude). 



Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 117 
 

 

As first step we analyzed the data file we have, to obtain some information about the 

time necessary for an ask/reply exchange between each of the peers. To do that we used 

the C program reported in Appendix D. In Figure 6.52 is reported a graph that displays 

the average reply time between each peer, while in Figure 6.53 the same graph is 

reported with the lowest part of the ordinates axe magnified. 

 

Figure 6.52: average reply time for each pair of peers 

Using the same C program we was also able to obtain the minimum reply time between 

each of the peers as reported in Figure 6.54, and the maximum reply time between each 

of the peers as reported in Figure 6.55. 

That data was obtained considering the time that intercourses between a data 

transmission from  a source to a destination an the corresponding reply (a datagram 

going from the one that was previously the destination to the ones that was previously 

the source). When two datagrams going from a source to a destination without a reply 

between them are found, the oldest datagram’s timestamp is thrown away. We have to 

note that there are 101 peers (over around 1,800) which do not have any time statistic, 

this is due to the fact that the communication pattern we considered never occurs for 

that peers. 
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Figure 6.53: average reply time between each pair of peers with the part of the ordinate axe between 0 
and 3 magnified 

The average reply time obtained is 2.2s. 

These network delays was obtained without scaling the timestamps with any factor. 

From our stand point, scaling the network delays is not correct, and using the values as 

they are is not correct too. More than that, deciding what kind of values to use can be 

hard. As a matter of fact using the average values can be a good choice, but being this a 

worst case estimation, we should use the maximum ones. Any choice we did would led 

us to introduce enormous delays having an uncertainty that is often higher than the 

delays introduced by the whole crypto-system. We are talking about delays of some 

seconds (around 4s in average) in a system that can process 1.8 million of datagrams in 

les than 12s! We have also to remember that we are working on a model, and adding 

that delays would change the system behavior, leading us far from the indication given 

by the real timestamps we have in the data file. 
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Figure 6.54: minimum reply time between each pair of peers 

 

Figure 6.55: maximum reply time between each pair of peers 
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6.6.2. Conclusions about the SA creation delays 

As stated before, the main delays that must be introduced for considering the SA 

creation phase, strictly depend on unpredictable events, such as the network 

communications. Moreover, thinking about how the simulation should work, it can be 

pointed out that the datagrams would need to be reordered to keep the simulated system 

running while the SAs are created. Not reordering the packets would mean that, for each 

SA-pair creation, the system would stop for around 4s waiting for the key generation 

process to be completed. In both cases we would consider a system behavior far from 

reality. As a matter of fact in the first case the datagram reordering would dramatically  

increase the temporal locality of the packets, lowering the number of avoidable cache 

misses; in the latter case we would have a simulation reproducing a system stalling at 

each SA-pair creation. 

From our stand point the only way for obtaining a reasonable simulation including the 

SA creation phase, would be to take some data from a real IPSec system. Using such 

data, would also allow to study the effects of a SA closure policy on the performance of 

the system. As a matter of fact, when a SA is closed and needs to be reopened, the SA 

creation mechanism (IKE phase 2) needs to be used. 

The previous considerations lead us to decide not to write any further simulation based 

on the available data. 

6.7. Technical details related to the simulations 

The simulation programs was compiled using the GNU gcc compiler (2.96 modified by 

Red Hat) under Red Hat Linux 7.2 (with a 2.4.18 kernel). The only gcc option used was 

“-O3”  that makes the compiler perform the best possible code optimization for speed it 

can do.  

The PC used to run the simulations is based on an AMD Athlon XP1700+ (1.46GHz) 

processor. Each simulation run described in section 6.4 takes around 4 seconds; the ones 

described in section 6.5 take around 7 seconds each. 

All the graphs shown in this chapter were obtained using the gnuplot tool. 
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6.8. Choiching the optimal cache dimension 

From the results shown in the previous sections, we can state that the desired throughput 

can be obtained using a 128-entry or a 256-entry cache. Obviously, those performance 

are provided only using the right clock rate for the AES hardware. Although some 

indications about the values to be used for that parameter are shown here, the study of 

its optimal value is beyond the scope of this document. 

Also changing the other system’s parameters may impact on the optimal cache 

dimension to be chosen. For example, considering a CRC hardware two order of 

magnitude slower than the considered one would lead us point out that also the 256-

entry cache is not enough to support the desired throughput. 

For choosing the right cache dimension, all the system parameters have to be 

considered, and a performance margin should be taken, considering all the 

approximations made writing the simulations. Using the parameters shown in the 

previous sections, the optimal cache dimension seems to be of 128 entries. That solution 

does not guarantee the best reuse of the cache entries before discard, but it seems not to 

provide so different performance from the 256-entry cache, while it allows to save of 

16kb of memory on the crypto-processor. 

6.9. Results validation 

With “validation” we mean the use of a different set of data to verify the obtained 

results, as normally done in the model identification field. As stated before we have 

available another (shorter) set of data taken from the same system in a different daytime 

([ITA-2]). Using that set of data, the results obtained are pretty much the same as the 

ones obtained with the other data file. In Figure 6.56 is reported (for example) the 

throughput obtained with a 128-entry cache and a 60MHz AES hardware. In that case 

the required average throughput is of 210.9Mbit/s, as the obtained one. The throughput 

that can be reached here is higher than in the previous cases because the considered 

traffic has a slightly different shape. Less but bigger datagrams per second are here 



Chapter 6 The crypto-processor used on a router: study of the optimal SA cache dimension 122 
 

 

processed. With this kind of traffic the AES hardware is able to work in better 

conditions allowing a higher throughput. 

A further validation of the conducted studies should be done using sets of data taken 

from other systems. 

 

Figure 6.56: throughput obtained using a 128-entry cache and an AES hardware running at 60MHz with 
a different set of data 



Chapter 7 Conclusions 123 
 

 

7. Conclusions 

Defining the security policy and the smart card software interface is a good starting 

point for future development of the project. Furthermore, defining the smart card 

software interface lead us to develop a quite deep understanding of the IKE and IPSec 

protocols. 

Studying the data taken from a real system, we were also able to understand the 

dimension of the memory needed in a high-performance crypto-processor to support 

IPSec in a high throughput system. Some data about the SA closure policy to be used 

were also obtained. 
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8. Possible future improvements of the system 

8.1. Testing and verification of the software inter face 

The smart card software interface described here need to be tested in a real IPSec 

implementation, mainly to verify that the provided commands allow the system to work 

in the right way. This can be done only when both a complete software model of the 

smart card and an IPSec implementation based on that model will be ready. 

That test would also allow to discover possible interoperability problems with other 

IPSec implementations, for example conducting the on-line test provided on the NIST 

website ([NIST-1]). 

8.2. Further studies about the SA cache 

Further studies about the crypto-processor’s SA-database can be conducted using data 

taken from real IPSec systems. In that way we would be able to see the effects of the SA 

creation phase on the system’s performance and on the cache usage. 

More precise data about cache misses can be also obtained running the same simulation 

program we used on data taken from a real 200Mbit/s system. This would allow to run 

the simulation without scaling the timestamps, so that less approximations were 

introduced in the results. 

Further studies should also be done on the behavior of the SA cache with respect to the 

SA creation process. 
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Appendix A.  The smart card interface code 

A.1. sC_driver.h 

//sC_driver.h 
// header definition of the smart card software int erface for IPSec 
 
//made by Alberto Ferrante 
//May-June 2001 
 
#include<limits.h> 
 
#ifndef __SC_DRIVER__ 
#define __SC_DRIVER__ 
 
//maximum number of slots available into the S/C 
#define MAX_SC_SLOTS 16 
//maximum number of SA available = MAX_SC_SLOTS*40 
#define MAX_SA MAX_SC_SLOTS*40 
//length of the S/C command queue 
#define MAX_SC_QUEUE 10  
 
 
//smart card command code definitions (8 bits for e ach command) 
#define LOGIN     1 
#define REFRESH_SESSION_KEY  2 
#define RESET_SC    3 
#define TEST_SC   4 
#define READ_SC_STATUS   5 
#define SET_SA_STATUS    6 
#define GET_SA_PARAMETERS   7 
#define GEN_DH    8 
#define COMPLETE_DH   9 
#define DELETE_SA   10 
#define SYMM_DECRYPT   11 
#define SYMM_ENCRYPT   12 
#define SET_ECC_INFO   13 
#define GET_ECC_INFO   14 
#define GET_PUB_KEY   15 
#define PUBLIC_ENCRYPT   16 
#define PUBLIC_DECRYPT   17 
#define HASH    18 
#define GEN_SYMM_SIGN   19 
#define GEN_ECDSA_SIGNATURE  20 
#define VERIFY_ECDSA_SIGNATURE 21 
 
//driver command code definitions (8 bits for each command) 
#define SC_ERROR  22 
#define LOGIN_RESULTS  23  
#define TEST_RESULTS  24 
#define SC_STATUS  25 
#define SA_PARAMETERS  26 
#define RANDOM_DH  27 
#define SYMM_DECRYPTED_P 28 
#define SYMM_ENCRYPTED_P 29 
#define ECC_INFO   30 
#define ECC_KEY  31 
#define ECC_ENCRYPTED  32 
#define ECC_DECRYPTED  33 
#define HASH_RESULTS  34 
#define SYMM_SIGN  35 
#define ECDSA_SIGNATURE 36 
#define ECDSA_CHECK_RES 37 
#define CONFIRMATION  38 
 
//error codes 
#define GENERIC   1 
#define BAD_SA_INDEX   2 
#define WRONG_AES_PACKET  4 
#define TAMPERED_SA_INFORMATION 5 
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#define WRONG_DH_NUMBER  6 
#define AES_PARAMETERS_NOT_SET 7 
#define WRONG_ECC_INFO   8 
#define ECC_INFO_NOT_SET  9 
#define WRONG_PRD_PARAMETER  10  
#define WRONG_SYMM_SIGN_PARAM  11 
#define WRONG_SIGNATURE_PARAM  12 
#define LOGIN_ALREADY_DONE  13 
#define CANNOT_REFRESH_S_KEY  14  
 
//hashfcn parameter 
#define HMACMD5   1 
#define HMACSH1   2 
 
//methods error codes 
#define OK  0 
#define GEN_ERROR -1 
#define TOO_OPENED -2 
#define SC_QUE_FULL -3 
 
struct Info{ 
 unsigned int sa; //sa number into the SADB 
 unsigned int slot; //sc slot in which the SA has b een allocated, if any 
 unsigned int* saved; //space for saving info for s wapping  
}; 
typedef Info saInfo; 
 
 
 
struct  Slot{ 
 saInfo* posArray; 
 unsigned int usage; 
}; 
typedef Slot scSlot; 
 
 
class sC_driver { 
 public: 
  sC_driver(iPSec ipsec, SmartCard SC); //construct or 
  ~sC_driver(); //destructor 
  
  int ip_rcv(unsigned int length, unsigned int* dat a); 
  int login(unsigned int pin); 
  int reset_sc(); 
  int test_sc(unsigned int puk); 
  int genDH(unsigned int sa, unsigned int key_dim, unsigned int mode,  

unsigned int rounds); 
  int compDH(unsigned int sa, unsigned int key_dim,  unsigned int* dh); 
  int deleteSA(unsigned int number); 
  int symmDecrypt(unsigned int sa, unsigned int len gth, unsigned int* data,  

unsigned int hashf, unsigned int sigf, unsigned int  ivf); 
  int symmEncrypt(unsigned int sa, unsigned int len gth, unsigned int* data,  

unsigned int hashf, unsigned int sigf, unsigned int  ivf);  
  int setECCInfo(unsigned int n, unsigned int* A, u nsigned int* B,  

unsigned int* x, unsigned int* y);  
    //overloaded method: version without the key pa rameter 
  int setECCInfo(unsigned int n, unsigned int* A, u nsigned int* B, unsigned int* x,  
    unsigned int* y, unsigned int* key);//version w ith the key parameter 
  int getPublicKey();  
  int pubEncrypt(unsigned int length, unsigned int*  data); 
  int pubDecrypt(unsigned int length, unsigned int*  data); 
  int hash(unsigned int length1, unsigned int lengt h2, unsigned int* data1,  

unsigned int* data2, unsigned int hashfcn);  
  int genSymmSign(unsigned int sa, unsigned int len gth, unsigned int* data1,  

unsigned int* data2, unsigned int hashfcn);  
  int genECDSASign(unsigned int length, unsigned in t* data); 
  int verifyECDSASig(unsigned int length, unsigned int* data); 
   
  
 private: 
  SmartCard SC; 
  iPSec ipsec; /*  the ipsec process that inizializ ed the driver; 
     if there are more than one IPSec instances, 
     it will be necessary to store it into the saIn fo 
     structure so that each opened SA has an associ ated 
     IPSec instance. In that case, the genDH method  
     should also have the pointer to the IPSEc obje ct 
     as parameter and the ip_rcv method should sear ch 
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     into the saArray array the object to use. 
    */ 
 
  scSlot sc[MAX_SC_SLOTS]; 
  saInfo saArray[MAX_SA]; 
 
  unsigned int opened_dev; 
  static unsigned int istantiated=0; 
   
  unsigned int freeSlots; 
  unsigned int freeSa; 
  unsigned int freeQue; 
 
  unsigned int saved_n; 
  unsigned int* saved_A; 
  unsigned int* saved_B; 
  unsigned int* saved_x; 
  unsigned int* saved_y; 
  unsigned int* saved_key; 
 
  int firstFreeSlot(); 
  saInfo* firstFreeSa(); 
  void updateUsage(); 
  unsigned int findLeastUsed(); 
  unsigned int swap(); 
  saInfo* findSa(unsigned int sa); 
  int incOpened(); 
  void decOpened(); 
}; 
 
 
#endif //__SC_DRIVER__ 

A.2. sC_driver.cpp 

 
//sC_driver.cpp 
// smart card software interface for IPSec 
 
 
//made by Alberto Ferrante 
//May-June 2001 
 
#include <limits.h> 
#include <math.h> 
#include <stdlib.h> 
#include "sC_Driver.h" 
 
#ifndef NDEBUG 
#include <assert.h> 
#endif; 
 
 
sC_driver::sC_driver(iPSec ipsec, SmartCard SC){ 
//constructor 
//pre: ipsec!=NULL && SC!=NULL && istantiated == 0 
//post: this.ipsec!=NULL && this.SC!=NULL && istant iated == 1 
 
 #ifndef NDEBUG 
  assert(ipsec!=NULL); 
  assert(SC!=NULL); 
  assert(istantiated ==0); 
 #endif; 
 
 
 unsigned int i=0; 
 
 if (istantiated == 0){ 
  istantiated++; 
  opened_dev=0; 
  freeSlots=MAX_SC_SLOTS; 
  freeSa=MAX_SA; 
  freeQue=MAX_SC_QUEUE; 
 
  this.ipsec=ipsec; 
  this.SC=SC; 
  for (i=0; i<MAX_SA; i++){ 
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   saArray[i].scSlot=MAX_SC_SLOTS; 
   saArray[i].sa=0; 
  } 
  
  for (i=0; i<MAX_SC_SLOTS; i++){ 
   sa[i].posArray=NULL; 
   sa[i].usage=0; 
  }  
 
  current=0; 
 }  
 
 #ifndef NDEBUG 
  assert(this.ipsec!=NULL); 
  assert(this.SC!=NULL); 
  assert(istantiated == 1); 
 #endif; 
} 
 
 
sC_driver::~sC_driver(){ 
//destructor 
//pre: none 
//post: none 
} 
 
 
int sC_driver::ip_rcv(unsigned int length, unsigned  int* data){ 
//method for receiving data from the S/C 
//pre: length>0 && data!=NULL  
//post: none 
 
 #ifndef NDEBUG 
  assert(length>0); 
  assert(data!=NULL); 
 #endif; 
  
 unsigned int command=data[0]>>24; 
 
 switch(command){ 
  case SC_ERROR: 
   ipsec.error(data[0]&0x000000FF); 
   break; 
    
  case LOGIN_RESULTS: 

ipsec.loginResults(data[0]&0x00000700>>8, data[0]&0 x000000F0>>4, 
  data[0]&0x00000001);  

      //counter, status code, result 
   break; 
    
  case TEST_RESULTS: 
   //still to be defined!!! 
   break; 
    
  case SC_STATUS: 
   //unused so far 
   break; 
    
  case SA_PARAMETERS: 
   //unused so far 
   break; 
    
  case RANDOM_DH: 
   ipsec.randomDH(data[0]&0x000000FF, data+1); //SA  index, data 
   break; 
    
  case SYMM_DECRYPTED_P: 
   ipsec.symmDecrypted(data[0]&0x000000FF, data+1);  //SA index, data 
   break; 
    
  case SYMM_ENCRYPTED_P: 
   ipsec.symmEncrypted(data[0]&0x000000FF, data+1);  //SA index, data 
   break; 
    
  case ECC_INFO: 
   //unused so far 
   break; 
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  case ECC_KEY: 
   ipsec.ECCKey(data[0]&0x000000FF, (data[0]&0x00FF FF00)>>8, data+1);  
     //length, key length (bits), data 
   break; 
    
  case ECC_ENCRYPTED: 
   ipsec.ECCEncrypted(data[0]&0x000000FF, data+1); //length, data 
   break; 
    
  case ECC_DECRYPTED: 
   ipsec.ECCDecrypted(data[0]&0x000000FF, data+1); //length, data 
   break; 
    
  case HASH_RESULTS: 
   ipsec.hashResults(data[0]&0x000000FF, data+1); / /length, data 
   break; 
    
  case SYMM_SIGN:  
   ipsec.symmSign(data[0]&0x000000FF, data+1); //le ngth, data 
   break; 
    
  case ECDSA_SIGNATURE: 
   ipsec.ECDSASignature(data[0]&0x000000FF, data+1) ; //length, data 
   break; 
    
  case ECDSA_CHECK_RES: 
   ipsec.ECDSACheckRes(data[0]&0x000000FF, data+1);  //length, data 
   break; 
    
  case CONFIRMATION: 
   ipsec.confirmation(data[0]&0x000000FF); 
   break; 
    
  default: 
   break; 
 } 
 return OK; 
} 
 
 
int sC_driver::login(unsigned int pin){ 
//method for calling the LOGIN command 
//pre: none 
//post: none 
  
 if(incOpened()==1){ 
  unsigned int code=0; 
 
  code=(((unsigned int)LOGIN)<<24)|pin; 
  if (freeQue==0) return SC_QUE_FULL; else freeQue- -; 
  SC.sc_rcv(1, &code); 
  freeQue++; 
  
  decOpened(); 
  return OK; 
 }else return TOO_OPENED; 
} 
 
 
 
int sC_driver::reset_sc(){ 
//method for calling the RESET command 
//pre: none 
//post: none 
 
 if(incOpened()==1){ 
  unsigned int code=0; 
 
  code=(((unsigned int)RESET_SC)<<24); 
  if (freeQue==0) return SC_QUE_FULL; else freeQue- -; 
  SC.sc_rcv(1, &code); 
 
  freeQue++; 
 
  decOpened(); 
  return OK; 
 }else return TOO_OPENED; 
} 
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int sC_driver::test_sc(unsigned int puk){ 
//method for calling the TEST_SC command 
//pre: none 
//post: none 
 
 if(incOpened()==1){ 
  unsigned int code=0; 
 
  code=(((unsigned int)TEST_SC)<<24)|puk; 
  if (freeQue==0) return SC_QUE_FULL; else freeQue- -; 
  SC.sc_rcv(1, &code); 
  freeQue++; 
 
  decOpened(); 
  return OK; 
 }else return TOO_OPENED;  
} 
 
 
 
 
int sC_driver::genDH(unsigned int sa, unsigned int key_dim, unsigned int mode, unsigned int rounds){ 
//method for calling the GENDH command 
//pre: sa!=0 && (key_dim==128||key_dim==192||key_di m==256) && rounds <15 
//post: none 
 
 
 #ifndef NDEBUG 
  assert(sa!=0); 
  assert(key_dim==128||key_dim==192||key_dim==256);  

assert(rounds<15); 
 #endif; 
   
 if(incOpened()==1){ 
  int slotnum; 
  unsigned int code; 
  unsigned int key=0; 
 

switch(key_dim){ //the key dimension is transformed  in the corresponding code 
   case 196: 
    key=1; 

   break; 
   case 256: 
    key=2; 
    break; 

  default: 
    key=0; 
    break; 

 } 
   
  if (freeSa>0){ 
   freeSa--; 
   if(freeSlots>0){ 
    freeSlots--; 
    slotnum=firstFreeSlot(); 
   }else{  
    if (freeQue==0) return SC_QUE_FULL; else freeQu e--;  

//verifies if it is possible to perform the swap 
    slotnum=swap(); 
    freeQue++; 
   } 
   sc[slotnum].posArray=firstFreeSa(); 
   (sc[slotnum].posArray)->slot=slotnum; 
   updateUsage(); 
   sc[slotnum].usage=UINT_MAX; 
   code=(((unsigned int)GEN_DH)<<24)|(mode<<20)|(ro unds<<16) 

|(key<<8)|(unsigned int)slotnum; 
   if (freeQue==0) return SC_QUE_FULL; else freeQue --; 
   SC.sc_rcv(1, &code); 
   freeQue++; 
    
   decOpened(); 
   return OK; 
  } 
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  else{  
   decOpened(); 
   return GEN_ERROR; 
  }  
 }else return TOO_OPENED;  
} 
 
 
int sC_driver::compDH(unsigned int sa, unsigned int  key_dim, unsigned int* dh){ 
//method for calling the COMPLETE_DH command 
//pre: sa!=0 && (key_dim==128||key_dim==192||key_di m==256) & dh!=NULL  
//post: none 
 
 #ifndef NDEBUG 
  assert(sa!=0); 

assert(key_dim==128||key_dim==192||key_dim==256); 
  assert(dh!=NULL); 
 #endif; 
 
 if(incOpened()==1){ 
  saInfo* pos=NULL; 
  unsigned int slotnum=0; 
  unsigned int length=(unsigned int)ceil(((float)ke y_dim)/32); 
  unsigned int* payload=new(unsigned int[length+1]) ; 
  unsigned int i=0; 

unsigned int key=0; 
 

switch(key_dim){ //the key dimension is transformed  in the corresponding code 
   case 196: 
    key=1; 

   break; 
   case 256: 
    key=2; 
    break; 

  default: 
    key=0; 
    break; 

 } 
 
  if((pos=findSa(sa))!=NULL){ 
   if((slotnum=pos->slot)==MAX_SC_SLOTS){   

//the sa is not in the S/C and there is a free slot  
    if(freeSlots>0){ 
     freeSlots--; 
     slotnum=firstFreeSlot(); 
    } 
    else{ //the sa is not in the S/C performs a swa p and there are 

//no free slots  
     if(freeQue==0) return SC_QUE_FULL; else freeQu e--; 

//verify if it is possible to perform the swap 
     slotnum=swap(); 
     freeQue++; 
    } 
    sc[slotnum].posArray=pos; 
    pos->slot=slotnum; 
   } 
   updateUsage(); 
   sc[slotnum].usage=UINT_MAX; 
 
   //prepares the data to send to the S/C 
   payload[0]=(((unsigned int)COMPLETE_DH)<<24)|(ke y<<8)|(unsigned int)slotnum; 
   for(i=0;i<length;i++) payload[i+1]=dh[i]; 
    
   if(freeQue==0) return SC_QUE_FULL; else freeQue- -; 
   SC.sc_rcv(length+1, payload); 
   freeQue++; 
   
   decOpened(); 
   return OK; //operation correctly executed 
  } 
  else { 
   decOpened(); 
   return GEN_ERROR; 
  } 
 }else return TOO_OPENED; 
} 
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int sC_driver::deleteSA(unsigned int sa){ 
//method for calling the DELETESA command 
//pre: sa!=0 
//post: none 
 
 #ifndef NDEBUG 
  assert(sa!=0); 
 #endif; 
  
 if(incOpened()==1){ 
  saInfo* pos=NULL; 
  unsigned int code=0; 
 
  if((pos=findSa(sa))!=NULL){ 
   if(pos->slot<MAX_SC_SLOTS){ 
    code=(((unsigned int)DELETE_SA)<<24)|(unsigned int)pos->slot; 
    if (freeQue==0) return SC_QUE_FULL; else freeQu e--;; 
    SC.sc_rcv(1, &code); 
    freeQue++; 
 
    sc[pos->slot].usage=0; 
    freeSlots++; 
   } 
   pos->slot=MAX_SC_SLOTS; 
   pos->sa=0; 
   delete(pos->saved); 
   freeSa++; 
  } 
  return OK; 
 }else return TOO_OPENED;  
} 
 
 
 
int sC_driver::symmDecrypt(unsigned int sa, unsigne d int length, unsigned int* data, unsigned int 
hashf, 
      unsigned int sigf, unsigned int ivf){ 
//method for calling the SYMMDECRYPT command 
//pre: sa!=0 && length>0 && data!=NULL   
//post: none 
 
 #ifndef NDEBUG 
  assert(sa!=0); 
  assert(length>0); 
  assert(data!=NULL); 
 #endif; 
 
 if(incOpened()==1){ 
  saInfo* pos=NULL; 
  unsigned int slotnum=0; 
  unsigned int* payload=new(unsigned int[length+2]) ; 
  unsigned int i=0; 
 
  if((pos=findSa(sa))!=NULL){ 
   if((slotnum=pos->slot)==MAX_SC_SLOTS){  

//the sa is not in the S/C and there is a free slot  
    if(freeSlots>0){ 
     freeSlots--; 
     slotnum=firstFreeSlot(); 
    } 
    else{ //the sa is not in the S/C performs a swa p and there are 

//no free slots  
     if(freeQue==0) return SC_QUE_FULL; else freeQu e--; 

//verify if it is possible to perform the swap 
     slotnum=swap(); 
     freeQue++; 
    } 
    sc[slotnum].posArray=pos; 
    pos->slot=slotnum; 
   } 
   updateUsage(); 
   sc[slotnum].usage=UINT_MAX; 
 
   //prepares the data to send to the S/C 
   payload[0]=(((unsigned int)SYMM_DECRYPT)<<24)|(u nsigned int)slotnum; 
   payload[1]=hashf<<24|sigf<<23|ivf<<16|length; 
   for(i=0;i<length;i++) payload[i+2]=data[i]; 
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   if(freeQue==0) return SC_QUE_FULL; else freeQue- -; 
   SC.sc_rcv(length+2, payload); 
   freeQue++; 
   
   decOpened(); 
   return OK; //operation correctly executed 
  } 
  else { 
   decOpened(); 
   return GEN_ERROR; 
  } 
 }else return TOO_OPENED; 
   
} 
 
 
 
int sC_driver::symmEncrypt(unsigned int sa, unsigne d int length, unsigned int* data, 

unsigned int hashf, unsigned int sigf, unsigned int  ivf){ 
//method for calling the SYMMENCRYPT command 
//pre: sa!=0 && length>0 && data!=NULL   
//post: none 
 
 
 #ifndef NDEBUG 
  assert(sa!=0); 
  assert(length>0); 
  assert(data!=NULL); 
 #endif; 
 
 saInfo* pos=NULL; 
 unsigned int slotnum=0; 
 unsigned int* payload=new(unsigned int[length+2]);  
 unsigned int i=0; 
 
 if(incOpened()==1){ 
  if((pos=findSa(sa))!=NULL){ 
   if((slotnum=pos->slot)==MAX_SC_SLOTS){  
    if(freeSlots>0){ //the sa is not in the S/C and  there is a free slot 
     freeSlots--; 
     slotnum=firstFreeSlot(); 
    } 
    else{  //the sa is not in the S/C performs a sw ap and there are 

//no free slots  
     if (freeQue==0) return SC_QUE_FULL; else freeQ ue--; 

//verify if it is possible to perform the swap 
     slotnum=swap(); 
     freeQue++; 
    } 
    sc[slotnum].posArray=pos; 
    pos->slot=slotnum; 
   } 
   updateUsage(); 
   sc[slotnum].usage=UINT_MAX; 
 
   //prepares the data to send to the S/C 
   payload[0]=(((unsigned int)SYMM_ENCRYPT)<<24)|(u nsigned int)slotnum; 
   payload[1]=hashf<<24|sigf<<23|ivf<<16|length; 
   for(i=0;i<length;i++) payload[i+2]=data[i]; 
    
   if (freeQue==0) return SC_QUE_FULL; else freeQue --; 
   SC.sc_rcv(length+2, payload); 
   freeQue++; 
  
   decOpened(); 
   return OK; //operation correctly executed 
  } 
  else{ 
   decOpened(); 
   return GEN_ERROR; 
  } 
 }else return TOO_OPENED; 
   
} 
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int sC_driver::setECCInfo(unsigned int n, unsigned int* A, unsigned int* B, unsigned int* x, unsigned 
int* y){ 
      //n is the length in BITS 
//method for calling the SETECCINFO command 
//pre: n>0 && A!=NULL && B!=NULL && x !=NULL && y!= NULL 
//post: none 
 
 #ifndef NDEBUG 
  assert(n>0); 
  assert(A!=NULL); 
  assert(B!=NULL); 
  assert(x!=NULL); 
  assert(y!=NULL); 
 #endif; 
  
 if(incOpened()==1){ 
  unsigned int curveLen=(unsigned int)ceil(((float) n)/32); 
  unsigned int baseLen=(unsigned int)ceil(((float)n )*2/32); 
  unsigned int payLen=curveLen*2+baseLen*2+1; 
  unsigned int* payload=new(unsigned int[payLen]); 
  unsigned int i=0; 
  unsigned int notequals=0; 
 
  //verifies if the data has already been loaded in to the S/C to avoid 

//unuseful computations 
  if (n==saved_n){ 
   for(i=0;i<curveLen && notequals==0;i++){ 
    if (A[i]!=saved_A[i]) notequals++; 
    if (B[i]!=saved_B[i]) notequals++; 
   } 
   for(i=0;i<baseLen && notequals==0;i++){ 
    if (x[i]!=saved_x[i]) notequals++; 
    if (y[i]!=saved_y[i]) notequals++; 
   } 
  } 
  else notequals=1; 
 
  if (notequals!=0){ 
   //prepares the arrays to store the ECC info for successive comparings 
   delete(saved_A); saved_A=new(unsigned int[curveL en]); 
   delete(saved_B); saved_B=new(unsigned int[curveL en]); 
   delete(saved_x); saved_x=new(unsigned int[baseLe n]); 
   delete(saved_y); saved_y=new(unsigned int[baseLe n]); 
   delete(saved_key); saved_key=NULL; 
   saved_n=n; 
   
   //prepares the data to send to the S/C 
   payload[0]=(((unsigned int)SET_ECC_INFO)<<24)|n< <8|payLen; 
   for(i=0;i<curveLen;i++) payload[i+1]=saved_A[i]= A[i]; 
   for(i=0;i<curveLen;i++) payload[i+curveLen+1]=sa ved_B[i]=B[i]; 
   for(i=0;i<baseLen;i++) payload[i+curveLen*2+1]=s aved_x[i]=x[i]; 
   for(i=0;i<baseLen;i++) payload[i+curveLen*2+base Len+1]=saved_y[i]=y[i]; 
   if (freeQue==0) return SC_QUE_FULL; else freeQue --; 
   SC.sc_rcv(payLen, payload); 
   freeQue++; 
  } 
  decOpened(); 
  return OK; 
 }else return TOO_OPENED; 
} 
 
 
  
int sC_driver::setECCInfo(unsigned int n, unsigned int* A, unsigned int* B,  

unsigned int* x, unsigned int* y, unsigned int* key ){ 
        //n is the length in BITS 
//method for calling the SETECCINFO command passing  also the public key of the other peer 
//pre: n>0 && A!=NULL && B!=NULL && x !=NULL && y!= NULL && key!=NULL 
//post: none 
 
 if(incOpened()==1){ 
  unsigned int curveLen=(unsigned int)ceil(((float) n)/32); 
  unsigned int baseLen=(unsigned int)ceil(((float)n )*2/32); 
  unsigned int payLen=curveLen*3+baseLen*2+1; 
  unsigned int* payload=new(unsigned int[payLen]); 
  unsigned int i=0; 
  unsigned int notequals=0; 
 



Appendix A The smart card interface code 138 
 

 

  //verifies if the data has already been loaded in to the S/C to avoid 
//unuseful computations 

  if (n==saved_n && saved_key!=NULL){ 
   for(i=0;i<curveLen && notequals==0;i++){ 
    if (A[i]!=saved_A[i]) notequals++; 
    if (B[i]!=saved_B[i]) notequals++; 
    if (key[i]!=saved_key[i]) notequals++; 
   } 
   for(i=0;i<baseLen && notequals==0;i++){ 
    if (x[i]!=saved_x[i]) notequals++; 
    if (y[i]!=saved_y[i]) notequals++; 
   } 
  } 
  else notequals=1; 
 
  if (notequals!=0){ 
   //prepares the arrays to store the ECC info for successive comparings 
   delete(saved_A); saved_A=new(unsigned int[curveL en]); 
   delete(saved_B); saved_B=new(unsigned int[curveL en]); 
   delete(saved_x); saved_x=new(unsigned int[baseLe n]); 
   delete(saved_y); saved_y=new(unsigned int[baseLe n]); 
   delete(saved_key); saved_key=new(unsigned int[cu rveLen]); 
   saved_n=n; 
   
   //prepares the data to send to the S/C 
   payload[0]=(((unsigned int)SET_ECC_INFO)<<24)|n< <8|payLen; 
   for(i=0;i<curveLen;i++) payload[i+1]=saved_A[i]= A[i]; 
   for(i=0;i<curveLen;i++) payload[i+curveLen+1]=sa ved_B[i]=B[i]; 
   for(i=0;i<baseLen;i++) payload[i+curveLen*2+1]=s aved_x[i]=x[i]; 
   for(i=0;i<baseLen;i++) payload[i+curveLen*2+base Len+1]=saved_y[i]=y[i]; 
   for(i=0;i<curveLen;i++) payload[i+curveLen*2+bas eLen*2+1]=saved_key[i]=key[i]; 
   if (freeQue==0) return SC_QUE_FULL; else freeQue --; 
   SC.sc_rcv(payLen, payload); 
   freeQue++; 
  } 
  decOpened(); 
  return OK; 
 }else return TOO_OPENED; 
} 
 
 
 
int sC_driver::getPublicKey(){ 
//method for calling the TEST_SC command 
//pre: none 
//post: none 
 
 if(incOpened()==1){ 
  unsigned int code=0; 
 
  code=(((unsigned int)GET_PUB_KEY)<<24); 
  if (freeQue==0) return SC_QUE_FULL; else freeQue- -; 
  SC.sc_rcv(1, &code); 
  freeQue++; 
  decOpened(); 
  return OK; 
 }else return TOO_OPENED; 
} 
 
 
  
int sC_driver::pubEncrypt(unsigned int length, unsi gned int* data){ 
//method for calling the PUBENCRYPT command 
//pre: length>0 && data!=NULL 
//post: none 
 
 #ifndef NDEBUG 
  assert(length>0); 
  assert(data!=NULL); 
 #endif; 
 
 if(incOpened()==1){ 
  unsigned int* payload=new(unsigned int[length+1]) ; 
  unsigned int i=0; 
   
  payload[0]=(((unsigned int)PUBLIC_ENCRYPT)<<24)|l ength; 
  for(i=0;i<length;i++) payload[i+1]=data[i]; 
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  if (freeQue==0) return SC_QUE_FULL; else freeQue- -; 
  SC.sc_rcv(length+1, payload); 
  freeQue++; 
  decOpened(); 
  return OK; 
 }else return TOO_OPENED; 
} 
 
 
 
int sC_driver::pubDecrypt(unsigned int length, unsi gned int* data){ 
//method for calling the PUBDECRYPT command 
//pre: length>0 && data!=NULL 
//post: none 
 
 #ifndef NDEBUG 
  assert(length>0); 
  assert(data!=NULL); 
 #endif; 
 
 if(incOpened()==1){ 
  unsigned int* payload=new(unsigned int[length+1]) ; 
  unsigned int i=0; 
   
  payload[0]=(((unsigned int)PUBLIC_DECRYPT)<<24)|l ength; 
  for(i=0;i<length;i++) payload[i+1]=data[i]; 
   
  if (freeQue==0) return SC_QUE_FULL; else freeQue- -; 
  SC.sc_rcv(length+1, payload); 
  freeQue++; 
  decOpened(); 
  return OK; 
 }else return TOO_OPENED; 
} 
 
 
 
int sC_driver::hash(unsigned int length1, unsigned int length2, unsigned int* data1, 

unsigned int* data2, unsigned int hashfcn){ 
//method for calling the HASH command 
//pre: length1>0 && length2>0 && data1!=NULL && dat a2!=NULL && (hashfcn==1 || hashfcn==2) 
//post: none 
 
 #ifndef NDEBUG 
  assert(length1>0); 
  assert(length2>0); 
  assert(data1!=NULL); 
  assert(data2!=NULL); 
  assert(hashfcn==1 || hashfcn==2); 
 #endif; 
 
 if(incOpened()==1){ 
  unsigned int* payload=new(unsigned int[length1+le ngth2+1]); 
  unsigned int i=0; 
   
  payload[0]=(((unsigned int)HASH)<<24)|length1<<16 |length2<<8|hashfcn; 
  for(i=0;i<length1;i++) payload[i+1]=data1[i]; 
  for(i=0;i<length2;i++) payload[i+length1+1]=data2 [i]; 
   
  if (freeQue==0) return SC_QUE_FULL; else freeQue- -; 
  SC.sc_rcv(length1+length2+1, payload); 
  freeQue++; 
  decOpened(); 
  return OK; 
 }else return TOO_OPENED; 
} 
 
 
  
int sC_driver::genSymmSign(unsigned int sa, unsigne d int length, unsigned int* data1, 

unsigned int* data2, unsigned int hashfcn){ 
//method for calling the GETSYMMSIGN command 
//pre: sa!=0 && length >0 & data1!=NULL && data2!=N ULL && (hashfcn==1 || hashfcn==2) 
//post: none 
 
 #ifndef NDEBUG 
  assert(sa!=0); 
  assert(length>0); 
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  assert(data1!=NULL); 
  assert(data2!=NULL); 
  assert(hashfcn==1 || hashfcn==2); 
 #endif; 
 
 if(incOpened()==1){ 
  unsigned int* payload=new(unsigned int[length*2+1 ]); 
  unsigned int i=0; 
   
  payload[0]=(((unsigned int)GEN_SYMM_SIGN)<<24)|le ngth<<16|hashfcn<<8|sa; 
  for(i=0;i<length;i++) payload[i+1]=data1[i]; 
  for(i=0;i<length;i++) payload[i+length+1]=data2[i ]; 
   
  if (freeQue==0) return SC_QUE_FULL; else freeQue- -; 
  SC.sc_rcv(length*2+1, payload); 
  freeQue++; 
  decOpened(); 
  return OK; 
 }else return TOO_OPENED; 
} 
 
 
 
 
int sC_driver::genECDSASign(unsigned int length, un signed int* data){ 
//method for calling the GENECDSASIGN command 
//pre: length>0 && data!=NULL 
//post: none 
 
 #ifndef NDEBUG 
  assert(length>0); 
  assert(data!=NULL); 
 #endif; 
 
 if(incOpened()==1){ 
  unsigned int* payload=new(unsigned int[length+1]) ; 
  unsigned int i=0; 
   
  payload[0]=(((unsigned int)GEN_ECDSA_SIGNATURE)<< 24)|length; 
  for(i=0;i<length;i++) payload[i+1]=data[i]; 
   
  if (freeQue==0) return SC_QUE_FULL; else freeQue- -; 
  SC.sc_rcv(length+1, payload); 
  freeQue++; 
  decOpened(); 
  return OK; 
 }else return TOO_OPENED; 
} 
 
 
 
int sC_driver::verifyECDSASig(unsigned int length, unsigned int* data){ 
//method for calling the VERIFYECDSASIGN command 
//pre: length>0 && data!=NULL 
//post: none 
 
 #ifndef NDEBUG 
  assert(length>0); 
  assert(data!=NULL); 
 #endif; 
 
 if(incOpened()==1){ 
  unsigned int* payload=new(unsigned int[length+1]) ; 
  unsigned int i=0; 
   
  payload[0]=(((unsigned int)VERIFY_ECDSA_SIGNATURE )<<24)|length; 
  for(i=0;i<length;i++) payload[i+1]=data[i]; 
   
  if (freeQue==0) return SC_QUE_FULL; else freeQue- -; 
  SC.sc_rcv(length+1, payload); 
  freeQue++; 
  decOpened(); 
  return OK; 
 }else return TOO_OPENED; 
} 
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//*******************************private methods*** ********************************** 
 
 
 
int sC_driver::firstFreeSlot(){  
//computes the first free mem slot into the S/C, if  any 
//pre: sc!=NULL  
//post: slot<sc+MAX_SC_SLOTS || slot==NULL 
 
 #ifndef NDEBUG 
  assert(sc!=NULL); 
 #endif; 
  
 scSlot* slot=sc; 
 int pos=0; 
  
 while(pos<MAX_SC_SLOTS && slot->posArray!=0){ 
  slot++; 
  pos++; 
 }  
 
   
 if (slot=sc+MAX_SC_SLOTS) pos=-1; 
  
 #ifndef NDEBUG 
  assert(pos<MAX_SC_SLOTS || pos==-1); 
 #endif; 
  
 return pos; 
} 
 
 
saInfo* sC_driver::firstFreeSa(){ 
//computes the first free empty saArray position, i f any 
//pre: saArray!=NULL  
//post: num<sc+MAX_SA || num==NULL 
 
 #ifndef NDEBUG 
  assert(saArray!=NULL); 
 #endif; 
  
 saInfo* num=saArray; 
  
 while(num<(saArray+MAX_SA) && num->sa!=0) num++; 
 
   
 if (num=saArray+MAX_SA) num=NULL; 
  
 #ifndef NDEBUG 
  assert(num<saArray+MAX_SA|| num==NULL); 
 #endif; 
  
 return num; 
} 
 
 
void sC_driver::updateUsage(){ 
//update the usage info for all the sa contained in  S/C mem slots 
//pre: none  
//post: none 
 
 scSlot* slot; 
  
 for(slot=sc; slot<sc+MAX_SC_SLOTS;slot++) slot->us age--; 
} 
 
 
unsigned int sC_driver::findLeastUsed(){ 
//return the index of the least used sa 
//pre: none 
//post: pos<MAX_SC_SLOTS 
 
 scSlot* slot=sc; 
 unsigned int i=0, 
   pos=0, 
   u=UINT_MAX; 
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 while(i<MAX_SC_SLOTS){ 
  if(slot->usage<u){ 
   pos=i; 
   u=slot->usage; 
  } 
  if (u==0) break;   
  i++; slot++; 
 } 
  
 #ifndef NDEBUG 
  assert(pos<MAX_SC_SLOTS); 
 #endif; 
 
 return pos; 
} 
 
 
unsigned int sC_driver::swap(){ 
//perform the swap of an sa and return the index of  the freed slot 
//pre: none 
//post: pos<MAX_SC_SLOTS 
 
 unsigned int pos=findLeastUsed(); 
 unsigned int code=(((unsigned int)GET_SA_PARAMETER S)<<24)|pos; 
 SC.sc_rcv(1, &code);//the room in the command queu e should be assured by previous controls 
 (sc[pos].posArray)->slot=MAX_SC_SLOTS;  
  //the S/C will call the ip_rcv method giving the SA parameters to be saved 
  
 #ifndef NDEBUG 
  assert(pos<MAX_SC_SLOTS); 
 #endif; 
 
 return pos; 
} 
 
 
saInfo* sC_driver::findSa(unsigned int sa){ 
//return the address of the searched sa 
//pre: sa>0 
//post: pos==NULL || pos>=sc && pos<sc+MAX_SA  
 
 #ifndef NDEBUG 
  assert(sa>0); 
 #endif; 
 
 //first we search into the sc array... maybe we're  lucky!:-)) 
 scSlot* slot=sc; 
 
 while (slot!=NULL && slot<sc+MAX_SC_SLOTS && (slot ->posArray)->sa!=sa) slot++; 
 if (slot!=NULL && slot<sc+MAX_SC_SLOTS){ 
  
  #ifndef NDEBUG 
   assert(slot->posArray==NULL||slot->posArray>=saA rray &&  

slot->posArray<saArray+MAX_SA); 
  #endif; 
    
  return slot->posArray;  
 } 
 
 //if not found into the sc array we search into th e saArray 
 saInfo* pos=saArray; 
 while (pos!=NULL && pos<saArray+MAX_SA && pos->sa! =sa) pos++; 
  
 if  (pos!=NULL || pos>=saArray+MAX_SA) pos=NULL; 
  
 #ifndef NDEBUG 
  assert(pos==NULL||pos>=saArray && pos<saArray+MAX _SA); 
 #endif; 
 
 return pos; 
} 
 
int sC_driver::incOpened(){ 
//increments the number of opened devices checking that is never higher than one 
//pre: none 
//post: none 
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 if(opened_dev==0){  
  opened_dev++; 
  return 1; 
 } 
 else return 0; 
  
} 
 
 
void sC_driver::decOpened(){ 
//decrements the number of opened devices 
//pre: none 
//post: none 
 opened_dev--; 
} 
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Appendix B. Cache behavior simulat ion without delays 

// 
//file: simul-no-delay.c 
// 
//simulation of a crypto-processor SA cache using a  completely  
//associative cache with the LRU policy. Cache miss es study only. 
// 
//written by Alberto Ferrante, April 2002 
 
 
 
#include <stdio.h> 
#include <string.h> 
 
//program compilation option defines 
//#define USE_FIN_PACKETS  
//#define CLOSE_UNUSED  
//#define PRINT_INSTANT_STATISTICS  
//#define PRINT_CACHE_DISTRIB  
//#define PRINT_SA_DISTRIB  
//#define PRINT_CACHE_REUSE 
//#define PRINT_SA_REUSE 
//#define QUICK_MODE 
 
 
//dimension of the data structures 
#define CACHE_SIZE 256  
#define MAX_SA 4000  
#define ROW_LENGTH 70 
#define MAX_DEL 1000 
 
//scale factor for the timestamps; 0.00161 for reac hing 2Mbit/s 
#define SCALE_TIME 1 
 
//timeout for an unused connection 
#define UNUSED_TIMEOUT 1800 
//checking interval for unused connections 
#define CHECK_TIME 60 
 
struct dataT{  //data taken from file 
 double time; 
 int sourceIP; 
 int destIP; 
 int sourceTCP; 
 int destTCP; 
 int bytes; 
}; 
 
struct SADel{ //element of the SAD 
 int sourceIP; 
 int destIP; 
 int cached; 
 unsigned counter; 
 double time; 
}; 
 
struct SACel{  //element of the SAC 
 int sourceIP; 
 int destIP; 
 double time; 
 long countUsed; 
}; 
 
 
struct synFin{ 
 int sourceIP; 
 int destIP; 
 double time; 
 int used; 
}; 
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char row[ROW_LENGTH];  //row of the data file 
char rowFin[ROW_LENGTH];  //row of the syn/fin data  file 
FILE *infile; //input file 
FILE *infileFin; //input file for TCP Syn/Fin 
struct dataT datagram; //data related to each IP da tagram 
struct SADel SAD[MAX_SA]; //Security Association DB  
struct SACel SAC[CACHE_SIZE]; //Cached Security Ass ociation DB 
 
struct SADel deletedSA[MAX_DEL]; //for taking track  of the discarded SAs  
struct SADel *last;  //last element of the deleted SA list 
 
struct synFin fin; 
 
long  discarded,  //counts the discared SAs 
 discardedOnce,  //counts the number of SAs discard ed only once 
 countUnused, //counts the number of SA are discard ed because unused 
 howMany, //counts the number of opened SA 
 prevMissPrint, //number of misses previously print ed 
 prevCompulsoryPrint,  //number of comp. missess pr ev. printed 
 cacheReuse, //sum of the reuse data for each cache  entry 
 saReuse, //sum of the reuse of each SA 
 saNum, //number of SAs 
 cacheMisses,  //total number ofa cache misses 
 compulsoryMisses, //total number of comp. cache mi sses 
 totalDatagrams,  //total number of datagrams proce ssed 
 sa,  
 saDistr,  //used for printing the SA distrib. over  time 
 oldSa, //used for printing the stastistics 
 oldMiss, //used for printing the stastistics 
 oldComp, //used for printing the stastistics 
 closed; 
 
double saTime; //used for printing the SA cache dis trib. 
 
long bytes;  //total bytes processed 
 
double  discardTime, //for computing statistics on discarded SAs 
 shortestDiscardTime, 
 longestDiscardTime, 
 unusedTime; 
 
 
double toDouble(char* base, char* end){  //converts  a string to a double 
 double tmp=*base-48; 
 int div=10; 
  
 while(++base<end && *base!='.'){ 
  tmp=tmp*10+(*base)-48; 
 } 
 while(++base<end){ 
  tmp=tmp+((float)(*base-48))/div; 
  div*=10; 
 } 
 
 return tmp; 
} 
 
int toInt(char* base, char* end){  //converts a str ing to an integer 
 int tmp=(*base)-48; 
 
 while(++base<end){ 
  tmp=tmp*10+(*base)-48; 
 } 
 
 return tmp; 
} 
 
void fill(char row[ROW_LENGTH]){ //fills the struct ure datagram with the data taken by file 
 char *tmp=row; 
 char *base=row; 
 char *end; 
 int length=strlen(row); 
  
 /*setting datagram.time*/ 
 if ((end=strchr(row, ' '))<row+length){ 
  datagram.time=toDouble(base, end)*SCALE_TIME; 
  base=end; 
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 } 
 
 /*setting datagram.sourceIP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  datagram.sourceIP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting datagram.destIP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  datagram.destIP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting datagram.sourceTCP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  datagram.sourceTCP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting datagram.destTCP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  datagram.destTCP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting datagram.bytes*/ 
 end=row+length-1; 
 base++; 
 datagram.bytes=34+toInt(base, end); 
} 
 
struct SADel* searchSA(struct SADel* DB, struct SAD el *end, int source, int dest){   
      //searches an element in a SAD-like array 
 struct SADel* tmp=DB; 
 
 while (tmp<end){ 
  if(tmp->sourceIP==source && tmp->destIP==dest) 
   break; 
  else  
   tmp++; 
 } 
 
 if (tmp<end) 
  return tmp; 
 else 
  return NULL; 
} 
 
 
struct SACel* searchCache(int source, int dest){ // searches an element in the SAC DB 
 struct SACel* tmp=SAC; 
 
 while (tmp<SAC+CACHE_SIZE){ 
  if(tmp->sourceIP==source && tmp->destIP==dest) 
   break; 
  else  
   tmp++; 
 } 
 
 if (tmp<SAC+CACHE_SIZE) 
  return tmp; 
 else 
  return NULL; 
} 
 
 
struct SACel* replace(){ //cache replace with RLU p olicy 
 struct SACel* tmp; 
 struct SACel* which=SAC; 
 struct SADel* sa; 
  
 for (tmp=SAC+1; tmp<SAC+CACHE_SIZE; tmp++) 
  if (tmp->time<which->time) 
   which=tmp; 
 
 cacheReuse+=which->countUsed; 
#ifdef PRINT_CACHE_REUSE 
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 printf("%d\n", which->countUsed); 
#endif 
  
 if((sa=searchSA(SAD, SAD+MAX_SA, which->sourceIP, which->destIP))!=NULL) 
  sa->cached=CACHE_SIZE; 
  
 return which; 
} 
 
 
int addToCache(int newSA, int cachePos, int source,  int dest){  //add an SA to the SAC 
       //newSA==1 -> the SA is new, so no cache ent ry could exist 
 struct SACel* where; 
  
 if (newSA||cachePos>=CACHE_SIZE){ 
  cacheMisses++; 
#ifdef PRINT_CACHE_DISTRIB  
  if (datagram.time>=saTime+1){  //prints the distr ibution of the cache  
      //misses over 1 sec intervals 
   printf("%lf %d %d\n", saTime, cacheMisses-prevMi ssPrint, 
     compulsoryMisses-prevCompulsoryPrint); 
   saTime=(long)datagram.time; 
   prevMissPrint=cacheMisses; 
   prevCompulsoryPrint=compulsoryMisses; 
  } 
#endif //PRINT_CACHE_DISTRIB  
  if (newSA) 
   compulsoryMisses++; 
  if ((where=searchCache(0, 0))==NULL) 
   where=replace(); 
  where->sourceIP=source; 
  where->destIP=dest; 
  where->time=datagram.time; 
  where->countUsed=1; 
  return ((where-SAC)); 
 } 
 else{ 
  SAC[cachePos].time=datagram.time; 
  SAC[cachePos].countUsed++; 
  return cachePos; 
 } 
 
} 
 
 
void removeFromCache(struct SADel *sa){  //remove a  SA from the SAC 
 
 if (sa->cached<CACHE_SIZE){ 
  SAC[sa->cached].sourceIP=0; 
  SAC[sa->cached].destIP=0; 
  SAC[sa->cached].time=0; 
  cacheReuse+=SAC[sa->cached].countUsed; 
#ifdef PRINT_CACHE_REUSE 
  printf("%d\n", SAC[sa->cached].countUsed); 
#endif 
  SAC[sa->cached].countUsed=0; 
  sa->cached=CACHE_SIZE; 
 } 
} 
 
  
struct SADel* unused(){  //find a SA to discard if all the slots in the SAD are full 
 struct SADel* tmp=SAD; 
 struct SADel* found=SAD; 
 struct SADel* which; 
 
 for (tmp=SAD+1; tmp<SAD+MAX_SA; tmp++){ 
  if ((datagram.time-tmp->time)>(datagram.time-foun d->time)) 
   found=tmp; 
 } 
 
 if((which=searchSA(deletedSA, last, found->sourceI P, found->destIP))!=NULL){ 
  which->counter++; 
  discarded++; 
  discardTime+=datagram.time-found->time; 
  if (datagram.time-found->time<shortestDiscardTime ) 
   shortestDiscardTime=datagram.time-found->time; 
  if (datagram.time-found->time>longestDiscardTime)  



Appendix B Cache behavior simulation without delays 148 
 

 

   longestDiscardTime=datagram.time-found->time; 
  which->time=datagram.time; 
 } 
 else{ 
  if (last<deletedSA+MAX_DEL){ 
   last->sourceIP=found->sourceIP; 
   last->destIP=found->destIP; 
   last->counter=1; 
   last->time=datagram.time; 
   last++; 
  }else printf("no more room for deleted SAs!"); 
 } 
 sa--; 
  
 return found;  
} 
 
 
struct SADel* addSA(int source, int dest){  //add a  new SA 
 struct SADel* which; 
  
 if ((which=searchSA(SAD, SAD+MAX_SA, source, dest) )!=NULL){  
  which->counter++; 
  which->time=datagram.time; 
  which->cached=addToCache(0, which->cached, datagr am.sourceIP, datagram.destIP); 
 } 
 else{ 
  sa++; 
#ifdef QUICK_MODE 
  sa++; 
#endif 
#ifdef PRINT_SA_DISTRIB  
  //prints the distribution of the new SA over 1 se c intervals 
  if (datagram.time<saTime+1){   
   saDistr++; 
#ifdef QUICK_MODE 
   saDistr++; 
#endif 
  } 
  else{ 
   printf("%lf %d %d\n", saTime, saDistr, closed); 
   saTime=(long)datagram.time; 
   saDistr=2; 
   closed=0; 
  } 
#endif //PRINT_SA_DISTRIB 
 
#ifdef QUICK_MODE 
  //adds SAs as in IKE phase 2 - quick mode 
  if ((which=searchSA(SAD, SAD+MAX_SA, 0, 0))!=NULL ){  
   which->sourceIP=datagram.destIP; 
   which->destIP=datagram.sourceIP; 
   which->counter=1; 
   which->time=datagram.time; 
   which->cached=addToCache(1, CACHE_SIZE, datagram .destIP, datagram.sourceIP); 
  } 
  else{ 
   which=unused(); 
   removeFromCache(which); 
   countUnused++; 
   unusedTime+=datagram.time-which->time; 
   which->sourceIP=datagram.destIP; 
   which->destIP=datagram.sourceIP; 
   which->counter=1; 
   which->time=datagram.time; 
   which->cached=addToCache(1, CACHE_SIZE, datagram .destIP, datagram.sourceIP); 
  } 
#endif  //QUICK_MODE 
 
   
  if ((which=searchSA(SAD, SAD+MAX_SA, 0, 0))!=NULL ){  
   which->sourceIP=datagram.sourceIP; 
   which->destIP=datagram.destIP; 
   which->counter=1; 
   which->time=datagram.time; 
   which->cached=addToCache(1, CACHE_SIZE, datagram .sourceIP, datagram.destIP); 
  } 
  else{ 
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   which=unused(); 
   removeFromCache(which); 
   countUnused++; 
   unusedTime+=datagram.time-which->time; 
   which->sourceIP=datagram.sourceIP; 
   which->destIP=datagram.destIP; 
   which->counter=1; 
   which->time=datagram.time; 
   which->cached=addToCache(1, CACHE_SIZE, datagram .sourceIP, datagram.destIP); 
  } 
 } 
 
 return which; 
} 
 
 
void close(int source, int dest){  //closes a SA ba sing on the addresses given 
 struct SADel* which; 
  
 if ((which=searchSA(SAD, SAD+MAX_SA, source, dest) )!=NULL){ 
  removeFromCache(which); 
  which->sourceIP=0; 
  which->destIP=0; 
 
#if defined(USE_FIN_PACKETS) || defined (CLOSE_UNUS ED) 
  saReuse+=which->counter; 
  saNum++; 
#ifdef PRINT_SA_REUSE 
  printf("%d %d\n", saNum, which->counter); 
#endif //PRINT_SA_REUSE 
#endif //USE_FIN_PACKETS || CLOSE_UNUSED 
   
  which->counter=0; 
  which->time=0; 
  sa--; 
#ifdef PRINT_SA_DISTRIB  
  closed++; 
#endif 
 }  
} 
 
 
void closeNumber(struct SADel* which){  //close a S A based on the pointer passed 
  
 if (which!=NULL && which>=SAD && which<SAD+MAX_SA) { 
  removeFromCache(which); 
  which->sourceIP=0; 
  which->destIP=0; 
 
#if defined(USE_FIN_PACKETS) || defined (CLOSE_UNUS ED) 
  saReuse+=which->counter; 
  saNum++; 
#ifdef PRINT_SA_REUSE 
  printf("%d %d\n", saNum, which->counter); 
#endif //PRINT_SA_REUSE 
#endif //USE_FIN_PACKETS || CLOSE_UNUSED 
 
  which->counter=0; 
  which->time=0; 
  sa--; 
#ifdef PRINT_SA_DISTRIB  
  closed++; 
#endif 
 }  
} 
 
int fillFin(char row[ROW_LENGTH]){ //fills the stru cture datagram with the data taken by file 
 char *tmp=row; 
 char *base=row; 
 char *end; 
 int length=strlen(row); 
  
 /*setting fin.time*/ 
 if ((end=strchr(row, ' '))<row+length){ 
  fin.time=toDouble(base, end)*SCALE_TIME; 
  base=end; 
 } 
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 /*setting fin.sourceIP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  fin.sourceIP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting fin.destIP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  fin.destIP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting fin.sourceTCP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  base=end; 
 } 
  
 /*setting fin.destTCP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  base=end; 
 } 
  
 if ((end=strchr(++base, ' '))<row+length){ 
 } 
 fin.used=0; 
 return (*base=='F'); 
} 
 
 
void checkFin(){  //checks the SAs to be closed whe n a FIN packet is received 
 char* tmp; 
 if (datagram.time>=fin.time){ 
  if (fin.used==0){ 
   close(fin.sourceIP, fin.destIP); 
   fin.used=1; 
  } 
  while (fgets(rowFin, ROW_LENGTH, infileFin)!=NULL  && datagram.time>=fin.time){ 
   while (!fillFin(rowFin)){ 
    if((tmp=fgets(rowFin, ROW_LENGTH, infileFin))== NULL) 
     break; 
   } 
   if (tmp!=NULL && datagram.time>=fin.time){ 
    close(fin.sourceIP, fin.destIP); 
    fin.used=1; 
   } 
  } 
 } 
} 
 
int main(void){ 
 struct SADel* tmp; 
 struct SADel* tmpSAD; 
 struct SACel* tmp1; 
 unsigned i=0; 
 long lastCheck; 
 long oldestConnTime; 
  
 saReuse=0; 
 saNum=0; 
 lastCheck=0; 
 oldestConnTime=0; 
 cacheReuse=0; 
 closed=0; 
 bytes=0; 
 sa=0; 
 saDistr=0; 
 saTime=0; 
 shortestDiscardTime=1e6; 
 longestDiscardTime=0; 
 discardTime=0; 
 discarded=0; 
 last=deletedSA; 
 howMany=0; 
 unusedTime=0; 
 countUnused=0; 
 cacheMisses=0; 
 compulsoryMisses=0; 
 prevMissPrint=0; 
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 prevCompulsoryPrint=0; 
 totalDatagrams=0; 
 fin.used=1; 
 for (tmp=SAD; tmp<SAD+MAX_SA; tmp++){ 
  tmp->sourceIP=0; 
  tmp->destIP=0; 
  tmp->time=0; 
  tmp->counter=0; 
  tmp->cached=CACHE_SIZE; 
 }  
 for (tmp=deletedSA; tmp<deletedSA+MAX_DEL; tmp++){  
  tmp->sourceIP=0; 
  tmp->destIP=0; 
  tmp->time=0; 
  tmp->counter=0; 
 } 
 
 for(tmp1=SAC; tmp1<SAC+CACHE_SIZE; tmp1++){ 
  tmp1->sourceIP=0; 
  tmp1->destIP=0; 
  tmp1->time=0; 
  tmp1->countUsed=0; 
 } 
   
  
 infile=fopen("/home/alberto/tesi/simulations/lbl-t cp-3/lbl-tcp-3.tcp", "r"); 
#ifdef USE_FIN_PACKETS 
 infileFin=fopen("/home/alberto/tesi/simulations/lb l-tcp-3/lbl-tcp-3.sf", "r"); 
#endif 
 /*infile=fopen("/home/alberto/tesi/simulations/lbl -pkt-4/lbl-pkt-4.tcp", "r"); 
#ifdef USE_FIN_PACKETS 
  infileFin=fopen("/home/alberto/tesi/simulations/l bl-pkt-4/lbl-pkt-4.sf", "r"); 
#endif*/ 
 
 while (fgets(row, ROW_LENGTH,infile)!=NULL){ 
  fill(row); 
  totalDatagrams++; 
  bytes+=datagram.bytes; 
  tmp=addSA(datagram.sourceIP, datagram.destIP); 
  if (tmp!=NULL && tmp->counter==0){ 
   printf("SA closed: max SA usage reached"); 
   closeNumber(tmp); 
  } 
#ifdef USE_FIN_PACKETS 
  checkFin(); 
#endif 
     
#ifdef CLOSE_UNUSED 
  if (datagram.time>=lastCheck+CHECK_TIME){//each C HEC_TIME sec, checks and closes  
       //all the SA not used for more than 
       //UNUSED_TIMEOUT secs 
   if (datagram.time-oldestConnTime>=UNUSED_TIMEOUT ){ 
    oldestConnTime=datagram.time; 
    for(tmpSAD=SAD; tmpSAD<SAD+MAX_SA; tmpSAD++){ 
     if(tmpSAD->sourceIP!=0 && tmpSAD->destIP!=0){  
      if (datagram.time-tmpSAD->time>=UNUSED_TIMEOU T){ 
       /*printf("%d %d %lf %lf\n",  
        tmpSAD->sourceIP,  
        tmpSAD->destIP,  
        datagram.time, tmpSAD->time);*/ 
       closeNumber(tmpSAD); 
      } 
      else if (tmpSAD->time<oldestConnTime) 
       oldestConnTime=tmpSAD->time; 
     } 
    } 
   } 
   lastCheck=(long)datagram.time; 
  } 
#endif  //CLOSE_UNUSED 
 
#ifdef PRINT_INSTANT_STATISTICS 
  //prints the info about opened SA and cache misse s for each datagram 
  if(oldSa!=sa || oldMiss!=cacheMisses || oldComp!= compulsoryMisses){ 
   oldSa=sa; 
   oldMiss=cacheMisses; 
   oldComp=compulsoryMisses; 
   printf("%lf %d %d %d\n", datagram.time, sa, cach eMisses, compulsoryMisses); 
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  } 
#endif //PRINT_INSTANT_STATISTICS 
 
  /*printf("%lf %d %d %d %d %d *** %s\n ",  datagra m.time, datagram.sourceIP, 
       datagram.destIP, datagram.sourceTCP, 
       datagram.destTCP, datagram.bytes, row);*/ 
 } 
 
 fclose(infile); 
#ifdef USE_FIN_PACKETS 
 fclose(infileFin); 
#endif 
  
 /*howMany=0; 
 for (i=0; i<MAX_DEL && !(deletedSA[i].sourceIP==0 && deletedSA[i].destIP==0); i++){  
  howMany+=deletedSA[i].counter; 
  if(deletedSA[i].counter==1) 
   discardedOnce++; 
 }*/ 
 
#if !defined(USE_FIN_PACKETS) && !defined (CLOSE_UN USED) 
 saReuse=0; 
 for (i=0; i<MAX_SA; i++){ 
  if (SAD[i].sourceIP!=0 && SAD[i].destIP!=0){ 
   saReuse+=SAD[i].counter; 
#ifdef PRINT_SA_REUSE 
   printf("%d %d\n", i, SAD[i].counter); 
#endif //PRINT_SA_REUSE 
  } 
 } 
#endif //USE_FIN_PACKETS || CLOSE_UNUSED 
 
#if defined(USE_FIN_PACKETS) || defined (CLOSE_UNUS ED) 
 for (i=0; i<MAX_SA; i++){ 
  if (SAD[i].sourceIP!=0 && SAD[i].destIP!=0){ 
   saReuse+=SAD[i].counter; 
#ifdef PRINT_SA_REUSE 
   printf("%d %d\n", i, SAD[i].counter); 
#endif //PRINT_SA_REUSE 
  } 
 } 
 saNum+=sa; 
#endif //USE_FIN_PACKETS || CLOSE_UNUSED 
  
 for(tmp1=SAC; tmp1<SAC+CACHE_SIZE; tmp1++){ 
  if (tmp1->sourceIP!=0 && tmp1->destIP!=0){ 
   cacheReuse+=tmp1->countUsed; 
#ifdef PRINT_CACHE_REUSE 
   printf("%d\n", tmp1->countUsed); 
#endif 
  } 
 } 
 
 fprintf(stderr, "\n******************************* ********************************\n"); 
 fprintf(stderr, "********************************* ******************************\n"); 
 fprintf(stderr, "max number of SA: %d; cache size %d\n", MAX_SA, CACHE_SIZE); 
#ifdef USE_FIN_PACKETS 
 fprintf(stderr, "Using FIN TCP packets for SA clos ing\n"); 
#endif 
  
#ifdef CLOSE_UNUSED 
 fprintf(stderr, "Closing connections after an unus ed timeout of %ds (checking each %ds)\n", 
        UNUSED_TIMEOUT, CHECK_TIME); 
#endif 
 fprintf(stderr, "********************************* ******************************\n\n"); 
  
 /* 
 fprintf(stderr, "SAs discarded more than one time:  %d\n", discarded); 
 fprintf(stderr, "SAs discarded once: %d\n", discar dedOnce); 
 */ 
  
 fprintf(stderr, "Total number of datagrams analyze d %d\n", totalDatagrams); 
 fprintf(stderr, "Average dimension of datagrams (3 4bytes of header): %.2fbytes\n",  
     (float)bytes/(float)totalDatagrams); 
 fprintf(stderr, "Average data rate: %.3fkbit/s\n",  8*(float)(bytes)/datagram.time/1024); 
 fprintf(stderr, "Average connections managed per s econd: %.2f\n", 

(float)(totalDatagrams)/datagram.time); 
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#if !defined(USE_FIN_PACKETS) && !defined (CLOSE_UN USED) 
 fprintf(stderr, "Average reuse of each SA: %.2f\n" , (float)saReuse/(float)sa); 
#endif //!USE_FIN_PACKETS || !CLOSE_UNUSED 
 
#if defined(USE_FIN_PACKETS) || defined (CLOSE_UNUS ED) 
 fprintf(stderr, "Average reuse of each SA (before closing): %.2f\n", 

(float)saReuse/(float)saNum); 
#endif //USE_FIN_PACKETS || CLOSE_UNUSED 
  
 /* 
 fprintf(stderr, "average reuse of discarded SAs: % .2f\n", (float)howMany/(float)i); 
 fprintf(stderr, "shortest time between two discard s of \"the same\" SA: %.2lfs\n", 

shortestDiscardTime); 
 fprintf(stderr, "longest time between two discards  of \"the same\" SA: %.2lfs\n", 

longestDiscardTime); 
 fprintf(stderr, "average time between two discards  of \"the same\" SA: %.2lfs\n",  
       discardTime/(float)discarded); 
 fprintf(stderr, "average unused time between repla cement: %.2lfs\n", 

unusedTime/(float)countUnused); 
 */ 
 
 fprintf(stderr, "\nTotal cache misses: %d (%.2f\%) \n",  cacheMisses,  
     100*(float)cacheMisses/(float)totalDatagrams);  
 fprintf(stderr, "Compulsory misses: %d\n", compuls oryMisses); 
 fprintf(stderr, "Avoidable cache misses: %d (%.2f\ %)\n", cacheMisses-compulsoryMisses,  
     100*(float)(cacheMisses-compulsoryMisses)/(flo at)totalDatagrams); 
 
 fprintf(stderr, "Average reuse of each cache posit ion before replacing %.2f\n",  
    (float)cacheReuse/(float)cacheMisses); 
  
 return 0; 
} 
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Appendix C. Cache behavior s imulation consider ing the 

crypto processor delays 

// 
//file: simul-delay.c 
// 
//simulation of a crypto-processor SA cache using a  completely  
//associative cache with the LRU policy. Study of t he 
//delay introduced by the crypto processor, regardl ess of the 
//SA creation phase 
// 
//written by Alberto Ferrante, April 2002 
 
 
#include <stdio.h> 
#include <string.h> 
#include <math.h> 
 
//program compilation option defines 
//#define USE_FIN_PACKETS   
//#define CLOSE_UNUSED  
//the value defined for PRINT_THROUGHPUT_DISTRIB is  also used for timing the printing 
#define PRINT_THROUGHPUT_DISTRIB 0.25  
#define PRINT_CACHE_DISTRIB  
 
//#define QUICK_MODE 
 
//dimension of the data structures 
#define CACHE_SIZE 128 
#define MAX_SA 4000  
#define ROW_LENGTH 70 
#define MAX_DEL 1000 
 
//scale factor for the timestamps; 0.00161 for reac hing 200Mbit/s of throughput 
#define SCALE_TIME 0.00161  
 
//minimum distance between two datagram 
#define MIN_DISTANCE 1e-12 
 
//timeout for an unused connection 
#define UNUSED_TIMEOUT 1800 
//checking interval for unused connections 
#define CHECK_TIME 60  
 
//delay parameters 
#define CHANNELL 1.515e-8  
#define CHANNELL_INITIAL 1.515e-8  
#define CACHED_DELAY 5e-9  
//100MHz AES hardware 
//#define ENC_TIME 2.2e-7  
//#define ENC_SETUP 1.7e-7 
//80MHz AES hardware 
//#define ENC_TIME 2.75e-7  
//#define ENC_SETUP 2.125e-7 
//70MHz AES hardware 
//#define ENC_TIME 3.14e-7  
//#define ENC_SETUP 2.42e-7 
//60MHz AES hardware 
#define ENC_TIME 3.67e-7  
#define ENC_SETUP 2.83e-7 
//55MHz AES hardware 
//#define ENC_TIME 4e-7  
//#define ENC_SETUP 3.09e-7 
//50MHz AES hardware 
//#define ENC_TIME 4.4e-7  
//#define ENC_SETUP 3.4e-7 
#define SAINFO_LEN 66 
#define KEY 3  
#define CRC_TIME 4e-8 
 
struct dataT{  //data taken from file 
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 double time; 
 double theorTime; 
 int sourceIP; 
 int destIP; 
 int sourceTCP; 
 int destTCP; 
 int bytes; 
}; 
 
struct SADel{ //element of the SAD 
 int sourceIP; 
 int destIP; 
 int cached; 
 unsigned counter; 
 double time; 
}; 
 
struct SACel{  //element of the SAC 
 int sourceIP; 
 int destIP; 
 double time; 
}; 
 
 
struct synFin{  //Syn Fin packet data 
 int sourceIP; 
 int destIP; 
 double time; 
 int used; 
}; 
 
 
 
char row[ROW_LENGTH];  //row of the data file 
char rowFin[ROW_LENGTH];  //row of the syn/fin data  file 
FILE *infile; //input file 
FILE *infileFin; //input file for TCP Syn/Fin 
#ifdef PRINT_THROUGHPUT_DISTRIB 
FILE *outTdistrib; 
#endif 
#ifdef PRINT_CACHE_DISTRIB 
FILE *outcachedistrib; 
#endif 
struct dataT datagram; //data related to each IP da tagram 
struct SADel SAD[MAX_SA]; //Security Association DB  
struct SACel SAC[CACHE_SIZE]; //Cached Security Ass ociation DB 
 
struct SADel deletedSA[MAX_DEL]; //for taking track  of the discarded SAs  
struct SADel *last;  //last element of the deleted SA list 
 
struct synFin fin; 
 
long  discarded,  //counts the discared SAs 
 discardedOnce,  //counts the number of SAs discard ed only once 
 countUnused, //counts the number of SA are discard ed because unused 
 howMany, //counts the number of opened SA 
 delayed,  //counts the number of SAs that are dela yed due to processing time 
 prevMissPrint, //number of misses previously print ed 
 prevCompulsoryPrint,  //number of comp. missess pr ev. printed 
 cacheMisses,  //total number ofa cache misses 
 compulsoryMisses, //total number of comp. cache mi sses 
 totalDatagrams,  //total number of datagrams proce ssed 
 sa,  
 saDistr,  //used for printing the SA distrib. over  time 
 oldSa, //used for printing the stastistics 
 oldMiss, //used for printing the stastistics 
 oldComp; //used for printing the stastistics 
 
double saTime, //used for printing the SA cache dis trib. 
 delay,  //keeps track of the delay introduced by t he datagram processing 
 lastTimestamp,  //timestamp of the last datagram a nalizied 
 procTime; //total time used for processing  
 
long bytes;  //total bytes processed 
 
double  discardTime, //for computing statistics on discarded SAs 
 shortestDiscardTime, 
 longestDiscardTime, 
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 unusedTime; 
 
 
double toDouble(char* base, char* end){  //converts  a string to a double 
 double tmp=*base-48; 
 int div=10; 
  
 while(++base<end && *base!='.'){ 
  tmp=tmp*10+(*base)-48; 
 } 
 while(++base<end){ 
  tmp=tmp+((float)(*base-48))/div; 
  div*=10; 
 } 
 
 return tmp; 
} 
 
int toInt(char* base, char* end){  //converts a str ing to an int 
 int tmp=(*base)-48; 
 
 while(++base<end){ 
  tmp=tmp*10+(*base)-48; 
 } 
 
 return tmp; 
} 
 
void fill(char row[ROW_LENGTH]){ //fills the struct ure datagram with the data taken by file 
 char *tmp=row; 
 char *base=row; 
 char *end; 
 int length=strlen(row); 
  
 /*setting datagram.time*/ 
 if ((end=strchr(row, ' '))<row+length){ 
  datagram.time=toDouble(base, end)*SCALE_TIME; 
  datagram.theorTime=datagram.time; 
  base=end; 
 } 
 
 /*setting datagram.sourceIP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  datagram.sourceIP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting datagram.destIP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  datagram.destIP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting datagram.sourceTCP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  datagram.sourceTCP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting datagram.destTCP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  datagram.destTCP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting datagram.bytes*/ 
 end=row+length-1; 
 base++; 
 datagram.bytes=34+toInt(base, end); 
} 
 
struct SADel* searchSA(struct SADel* DB, struct SAD el *end, int source, int dest){   
      //searches an element in a SAD-like array 
 struct SADel* tmp=DB; 
 
 while (tmp<end){ 
  if(tmp->sourceIP==source && tmp->destIP==dest) 
   break; 
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  else  
   tmp++; 
 } 
 
 if (tmp<end) 
  return tmp; 
 else 
  return NULL; 
} 
 
 
struct SACel* searchCache(int source, int dest){ // searches an element in the SAC DB 
 struct SACel* tmp=SAC; 
 
 while (tmp<SAC+CACHE_SIZE){ 
  if(tmp->sourceIP==source && tmp->destIP==dest) 
   break; 
  else  
   tmp++; 
 } 
 
 if (tmp<SAC+CACHE_SIZE) 
  return tmp; 
 else 
  return NULL; 
} 
 
 
struct SACel* replace(){ //cache replace with LRU p olicy 
 struct SACel* tmp; 
 struct SACel* which=SAC; 
 struct SADel* sa; 
  
 for (tmp=SAC+1; tmp<SAC+CACHE_SIZE; tmp++) 
  if (tmp->time<which->time) 
   which=tmp; 
 if((sa=searchSA(SAD, SAD+MAX_SA, which->sourceIP, which->destIP))!=NULL) 
  sa->cached=CACHE_SIZE; 
  
 //store delay 
 delay+=(double)ENC_SETUP+(double)KEY*(double)ENC_T IME+(double)(SAINFO_LEN-2)*CRC_TIME+ 
  (ceil((double)SAINFO_LEN/4)+1)*(double)CHANNELL+( double)CHANNELL_INITIAL*2+ 
  (double)CHANNELL; 
  
 return which; 
} 
 
 
int addToCache(int newSA, int cachePos, int source,  int dest){  //add an SA to the SAC 
       //newSA==1 -> the SA is new, so no cache ent ry could exist 
 struct SACel* where; 
  
 delay+=CACHED_DELAY; 
 if (newSA||cachePos>=CACHE_SIZE){ 
  //miss delay 
  delay+=(double)ENC_SETUP+(double)KEY*(double)ENC_ TIME+(double)(SAINFO_LEN-2)*CRC_TIME+ 
   (ceil((double)SAINFO_LEN/4)+1)*(double)CHANNELL+ (double)CHANNELL_INITIAL; 
  cacheMisses++; 
#ifdef PRINT_CACHE_DISTRIB  
  if (datagram.time>=saTime+0.10){  //prints the di stribution of the cache  
      //misses over 1 sec intervals 
   fprintf(outcachedistrib, "%lf %d %d\n", saTime, cacheMisses-prevMissPrint, 
     compulsoryMisses-prevCompulsoryPrint); 
   saTime=datagram.time; 
   prevMissPrint=cacheMisses; 
   prevCompulsoryPrint=compulsoryMisses; 
  } 
#endif //PRINT_CACHE_DISTRIB  
   
  if (newSA) 
   compulsoryMisses++; 
  if ((where=searchCache(0, 0))==NULL) 
   where=replace(); 
   
  /*printf("pos %d: in %d %d %lf, out %d %d %lf\n",  where-SAC, datagram.sourceIP, 
    datagram.destIP, datagram.time, where->sourceIP ,  
    where->destIP, where->time);*/ 
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  where->sourceIP=source; 
  where->destIP=dest; 
  where->time=datagram.time; 
  return ((where-SAC)); 
 } 
 else{ 
  SAC[cachePos].time=datagram.time; 
  /*printf("Update pos %d: in %d %d %lf, out %d %d %lf\n", cachePos, datagram.sourceIP, 
    datagram.destIP, datagram.time, SAC[cachePos].s ourceIP,  
    SAC[cachePos].destIP, SAC[cachePos].time);*/ 
  return cachePos; 
 } 
 
} 
 
 
void removeFromCache(struct SADel *sa){  //remove a  SA from the SAC 
 
 if (sa->cached<CACHE_SIZE){ 
  SAC[sa->cached].sourceIP=0; 
  SAC[sa->cached].destIP=0; 
  SAC[sa->cached].time=0; 
  sa->cached=CACHE_SIZE; 
 } 
} 
 
  
struct SADel* unused(){  //find a SA to discard if all the slots in the SAD are full 
 struct SADel* tmp=SAD; 
 struct SADel* found=SAD; 
 struct SADel* which; 
 
 for (tmp=SAD+1; tmp<SAD+MAX_SA; tmp++){ 
  if ((datagram.time-tmp->time)>(datagram.time-foun d->time)) 
   found=tmp; 
 } 
 
 if((which=searchSA(deletedSA, last, found->sourceI P, found->destIP))!=NULL){ 
  which->counter++; 
  discarded++; 
  discardTime+=datagram.time-found->time; 
  if (datagram.time-found->time<shortestDiscardTime ) 
   shortestDiscardTime=datagram.time-found->time; 
  if (datagram.time-found->time>longestDiscardTime)  
   longestDiscardTime=datagram.time-found->time; 
  which->time=datagram.time; 
 } 
 else{ 
  if (last<deletedSA+MAX_DEL){ 
   last->sourceIP=found->sourceIP; 
   last->destIP=found->destIP; 
   last->counter=1; 
   last->time=datagram.time; 
   last++; 
  }else printf("no more room for deleted SAs!"); 
 } 
 sa--; 
  
 return found;  
} 
 
 
double process(int first){  //stub for simulating t he packet processing 
 
 return  (((double)CHANNELL_INITIAL+ 
  (double)(ceil((float)(datagram.bytes+16*first)/4) +2)*(double)CHANNELL)+ 
  ((double)CHANNELL_INITIAL+ 
  (double)(ceil((float)(datagram.bytes)/4)+1)*(doub le)CHANNELL) 
  +(double)ENC_SETUP+(double)ENC_TIME*ceil((double) datagram.bytes/16)); 
} 
 
 
struct SADel* addSA(int source, int dest){  //adds a new SA 
 struct SADel* which; 
  
 delay=0; 
 if ((which=searchSA(SAD, SAD+MAX_SA, source, dest) )!=NULL){  
  which->counter++; 



Appendix C Cache behavior simulation considering the crypto processor delays 159 
 

 

  which->cached=addToCache(0, which->cached, datagr am.sourceIP, datagram.destIP); 
  delay+=process(0); 
 } 
 else{ 
  //SA creation as in IKE Phase 2 quick mode 
#ifdef QUICK_MODE 
  sa++; 
  if ((which=searchSA(SAD, SAD+MAX_SA, 0, 0))==NULL ){  
   which=unused(); 
   removeFromCache(which); 
   countUnused++; 
   unusedTime+=datagram.time-which->time; 
  } 
  which->sourceIP=datagram.destIP; 
  which->destIP=datagram.sourceIP; 
  which->counter=1; 
  which->cached=addToCache(1, CACHE_SIZE, datagram. destIP, datagram.sourceIP); 
#endif //QUICK_MODE 
   
  sa++; 
  if ((which=searchSA(SAD, SAD+MAX_SA, 0, 0))==NULL ){  
   which=unused(); 
   removeFromCache(which); 
   countUnused++; 
   unusedTime+=datagram.time-which->time; 
  } 
  which->sourceIP=datagram.sourceIP; 
  which->destIP=datagram.destIP; 
  which->counter=1; 
  which->cached=addToCache(1, CACHE_SIZE, datagram. sourceIP, datagram.destIP); 
  delay+=process(1); 
 } 
 which->time=datagram.time+delay; 
 lastTimestamp=which->time; 
 procTime+=delay; 
 SAC[which->cached].time=which->time; 
  
 return which; 
} 
 
 
void close(int source, int dest){  //closes an SA 
 struct SADel* which; 
  
 if ((which=searchSA(SAD, SAD+MAX_SA, source, dest) )!=NULL){ 
  removeFromCache(which); 
  which->sourceIP=0; 
  which->destIP=0; 
  which->counter=0; 
  which->time=0; 
  sa--; 
 }  
} 
 
 
void closeNumber(struct SADel* which){  //closes an  SA already ahving its pointer 
  
 if (which!=NULL && which>=SAD && which<SAD+MAX_SA) { 
  removeFromCache(which); 
  which->sourceIP=0; 
  which->destIP=0; 
  which->counter=0; 
  which->time=0; 
  sa--; 
 }  
} 
 
 
int fillFin(char row[ROW_LENGTH]){ //fills the stru cture fin with the data taken by the sf file 
 char *tmp=row; 
 char *base=row; 
 char *end; 
 int length=strlen(row); 
  
 /*setting fin.time*/ 
 if ((end=strchr(row, ' '))<row+length){ 
  fin.time=toDouble(base, end)*SCALE_TIME; 
  base=end; 
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 } 
 
 /*setting fin.sourceIP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  fin.sourceIP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting fin.destIP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  fin.destIP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting fin.sourceTCP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  base=end; 
 } 
  
 /*setting fin.destTCP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  base=end; 
 } 
  
 if ((end=strchr(++base, ' '))<row+length){ 
 } 
 //if(*base=='F')printf("%lf %d %d %c\n", fin.time,  fin.sourceIP, fin.destIP, *base); 
 fin.used=0; 
 return (*base=='F'); 
} 
 
 
void checkFin(){  //checks the connections to be cl osed 
 char* tmp; 
 
 if (datagram.theorTime>=fin.time){ 
  if (fin.used==0){ 
   close(fin.sourceIP, fin.destIP); 
   fin.used=1; 
   /*printf("%lf %lf %d %d\n", fin.time, datagram.t heorTime,  
      fin.sourceIP, fin.destIP);*/ 
  } 
  while (fgets(rowFin, ROW_LENGTH, infileFin)!=NULL  && datagram.theorTime>=fin.time){ 
   while (!fillFin(rowFin)){ 
    if((tmp=fgets(rowFin, ROW_LENGTH, infileFin))== NULL) 
     break; 
   } 
   if (tmp!=NULL && datagram.theorTime>=fin.time){ 
    close(fin.sourceIP, fin.destIP); 
    /*printf("%lf %lf %d %d\n", fin.time, datagram. theorTime,  
       fin.sourceIP, fin.destIP);*/ 
    fin.used=1; 
   } 
  } 
 } 
} 
 
int main(void){ 
 struct SADel* tmp; 
 struct SADel* tmpSAD; 
 struct SACel* tmp1; 
 unsigned i=0; 
 long lastCheck; 
 long oldestConnTime; 
 double  throughTime, 
  throughTheorTime; 
 long throughBytes; 
 
//initialization  
 throughBytes=0; 
 throughTheorTime=0; 
 throughTime=0; 
 bytes=0; 
 delayed=0; 
 procTime=0; 
 sa=0; 
 saDistr=0; 
 saTime=0; 
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 shortestDiscardTime=1e6; 
 longestDiscardTime=0; 
 discardTime=0; 
 discarded=0; 
 last=deletedSA; 
 howMany=0; 
 unusedTime=0; 
 countUnused=0; 
 cacheMisses=0; 
 compulsoryMisses=0; 
 totalDatagrams=0; 
 fin.used=1; 
 for (tmp=SAD; tmp<SAD+MAX_SA; tmp++){ 
  tmp->sourceIP=0; 
  tmp->destIP=0; 
  tmp->time=0; 
  tmp->counter=0; 
  tmp->cached=CACHE_SIZE; 
 }  
 for (tmp=deletedSA; tmp<deletedSA+MAX_DEL; tmp++){  
  tmp->sourceIP=0; 
  tmp->destIP=0; 
  tmp->time=0; 
  tmp->counter=0; 
 } 
 
 for(tmp1=SAC; tmp1<SAC+CACHE_SIZE; tmp1++){ 
  tmp1->sourceIP=0; 
  tmp1->destIP=0; 
  tmp1->time=0; 
 } 
   
//opening the files  
 infile=fopen("/home/alberto/tesi/simulations/lbl-t cp-3/lbl-tcp-3.tcp", "r"); 
#ifdef USE_FIN_PACKETS 
 infileFin=fopen("/home/alberto/tesi/simulations/lb l-tcp-3/lbl-tcp-3.sf", "r"); 
#endif 
/* infile=fopen("/home/alberto/tesi/simulations/lbl -pkt-4/lbl-pkt-4.tcp", "r"); 
#ifdef USE_FIN_PACKETS 
  infileFin=fopen("/home/alberto/tesi/simulations/l bl-pkt-4/lbl-pkt-4.sf", "r"); 
#endif*/ 
 
#ifdef PRINT_THROUGHPUT_DISTRIB 
 outTdistrib=fopen("res/throughput.txt", "w"); 
#endif 
  
#ifdef PRINT_CACHE_DISTRIB 
 outcachedistrib=fopen("res/cacheDistr.txt", "w"); 
#endif 
 
 
 while (fgets(row, ROW_LENGTH,infile)!=NULL){ 
  fill(row); 
  if (datagram.time<lastTimestamp){ 
   datagram.time=lastTimestamp+MIN_DISTANCE; 
  } 
  //printf("%lf %lf\n", datagram.time, lastTimestam p); 
  totalDatagrams++; 
  bytes+=datagram.bytes; 
  tmp=addSA(datagram.sourceIP, datagram.destIP); 
  if (datagram.time!=datagram.theorTime){ 
   delayed++; 
  } 
 
#ifdef PRINT_THROUGHPUT_DISTRIB 
  if (datagram.time<throughTime+PRINT_THROUGHPUT_DI STRIB){ 
   throughBytes+=datagram.bytes; 
  } 
  else{ 
   fprintf(outTdistrib, "%.2lf %.2lf %.2lf %.2lf\n" , throughTime,  
    8*(double)throughBytes/(datagram.time-throughTi me), throughTheorTime, 
    8*(double)throughBytes/(datagram.theorTime-thro ughTheorTime)); 
   throughTime=datagram.time; 
   throughTheorTime=datagram.theorTime; 
   throughBytes=datagram.bytes; 
  } 
#endif 
 



Appendix C Cache behavior simulation considering the crypto processor delays 162 
 

 

  if (tmp!=NULL && tmp->counter==0){ 
   printf("SA closed: max SA usage reached"); 
   closeNumber(tmp); 
  } 
   
#ifdef USE_FIN_PACKETS 
  checkFin(); 
#endif 
 
#ifdef CLOSE_UNUSED 
  if (datagram.time>=lastCheck+CHECK_TIME){//each C HEC_TIME sec, checks and closes  
       //all the SA not used for more than 
       //UNUSED_TIMEOUT secs 
   if (datagram.time-oldestConnTime>=UNUSED_TIMEOUT ){ 
    oldestConnTime=datagram.time; 
    for(tmpSAD=SAD; tmpSAD<SAD+MAX_SA; tmpSAD++){ 
     if(tmpSAD->sourceIP!=0 && tmpSAD->destIP!=0){  
      if (datagram.time-tmpSAD->time>=UNUSED_TIMEOU T){ 
       /*printf("%d %d %lf %lf\n",  
        tmpSAD->sourceIP,  
        tmpSAD->destIP,  
        datagram.time, tmpSAD->time);*/ 
       closeNumber(tmpSAD); 
      } 
      else if (tmpSAD->time<oldestConnTime) 
       oldestConnTime=tmpSAD->time; 
     } 
    } 
   } 
   lastCheck=(long)datagram.time; 
  } 
#endif  //CLOSE_UNUSED 
 
 } 
 
  
//computing some statistics on the discarded SAs  
 /*howMany=0; 
 for (i=0; i<MAX_DEL && !(deletedSA[i].sourceIP==0 && deletedSA[i].destIP==0); i++){  
  howMany+=deletedSA[i].counter; 
  if(deletedSA[i].counter==1) 
   discardedOnce++; 
 }*/ 
 
 
#ifdef PRINT_THROUGHPUT_DISTRIB 
 fprintf(outTdistrib, "%.2lf %.2lf %.2lf %.2lf\n", throughTime,  
  (double)throughBytes/(datagram.time-throughTime),  throughTheorTime, 
  (double)throughBytes/(datagram.theorTime-throughT heorTime)); 
#endif 
 
 
//closing the files 
 fclose(infile); 
#ifdef USE_FIN_PACKETS 
 fclose(infileFin); 
#endif 
 
#ifdef PRINT_THROUGHPUT_DISTRIB 
 fclose(outTdistrib); 
#endif 
 
#ifdef PRINT_CACHE_DISTRIB 
 fclose(outcachedistrib); 
#endif 
 
//printing the results to standard error 

fprintf(stderr, "\n******************************** *******************************\n"); 
fprintf(stderr, "********************************** *****************************\n"); 

 fprintf(stderr, "max number of SA: %d; cache size %d\n\n", MAX_SA, CACHE_SIZE); 
 fprintf(stderr, "Time scale factor: %lf\n", SCALE_ TIME); 
 fprintf(stderr, "Channel initial time: %.3es\n", C HANNELL_INITIAL); 
 fprintf(stderr, "Channell transfer time (burst of 4 bytes): %.3es\n", CHANNELL); 
 fprintf(stderr, "Encryption setup time: %.3es\n", ENC_SETUP); 
 fprintf(stderr, "Encryption time for a 128-bit blo ck: %.3es\n", ENC_TIME); 
 fprintf(stderr, "Cache access time: %.3es\n", CACH ED_DELAY); 
 fprintf(stderr, "CRC generation time for a byte: % .3es\n", CRC_TIME); 
#ifdef USE_FIN_PACKETS 
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 fprintf(stderr, "Using FIN TCP packets for SA clos ing\n"); 
#endif 
  
#ifdef CLOSE_UNUSED 
 fprintf(stderr, "Closing connections after an unus ed timeout of %ds (checking each %ds)\n", 
        UNUSED_TIMEOUT, CHECK_TIME); 
#endif 
 fprintf(stderr, "********************************* ******************************\n\n"); 
 
 fprintf(stderr, "Total number of datagrams analyze d %d\n", totalDatagrams); 
 fprintf(stderr, "Average dimension of datagrams (3 4bytes of header): %.2fbytes\n",  
     (float)bytes/(float)totalDatagrams); 
 fprintf(stderr, "Average data rate: %.3fkbit/s\n",  8*(float)(bytes)/lastTimestamp/1024);  
 fprintf(stderr, "Theoretical average data rate: %. 3fkbit/s\n", 

8*(float)(bytes)/datagram.theorTime/1024); 
 fprintf(stderr, "Total processing time %lfs\n", pr ocTime); 
 fprintf(stderr, "Average processing time %lfs\n", procTime/(double)totalDatagrams); 
 fprintf(stderr, "Average connections managed per s econd: %.2f\n", 

(float)(totalDatagrams)/datagram.time); 
 fprintf(stderr, "\nTotal cache misses: %d (%.2f\%) \n",  cacheMisses,  
     100*(float)cacheMisses/(float)totalDatagrams);  
 fprintf(stderr, "Compulsory misses: %d\n", compuls oryMisses); 
 fprintf(stderr, "Avoidable cache misses: %d (%.2f\ %)\n", cacheMisses-compulsoryMisses,  
     100*(float)(cacheMisses-compulsoryMisses)/(flo at)totalDatagrams); 
 fprintf(stderr, "\nNumber of delayed datagrams %d (%.2lf\%)\n", delayed,  
       (float)delayed*100/(float)totalDatagrams); 
 
 
 return 0; 
} 



Appendix D Network timing evaluation 164 
 

 

Appendix D. Network t iming evaluat ion 

// 
//file: network.c 
// 
//program for computing statistics on the network d elays  
//  
//written by Alberto Ferrante, April 2002 
 
#include <stdio.h> 
#include <string.h> 
#include <limits.h> 
 
//dimension of the data structures 
#define ROW_LENGTH 70 
#define MAX_EL 4000 
 
 
struct dataT{  //data taken from file 
 double time; 
 int sourceIP; 
 int destIP; 
 int sourceTCP; 
 int destTCP; 
 int bytes; 
}; 
 
struct statStruct{ 
 int sourceIP; 
 int destIP; 
 long counter; 
 double maxTime; 
 double minTime; 
 double last; 
 double sumTime; 
 int replied; 
}; 
 
char row[ROW_LENGTH];  //row of the data file 
FILE *infile; //input file 
struct dataT datagram; //data related to each IP da tagram 
struct statStruct conn [MAX_EL]; // 
unsigned last; 
 
double toDouble(char* base, char* end){ 
 double tmp=*base-48; 
 int div=10; 
  
 while(++base<end && *base!='.'){ 
  tmp=tmp*10+(*base)-48; 
 } 
 while(++base<end){ 
  tmp=tmp+((float)(*base-48))/div; 
  div*=10; 
 } 
 
 return tmp; 
} 
 
int toInt(char* base, char* end){ 
 int tmp=(*base)-48; 
 
 while(++base<end){ 
  tmp=tmp*10+(*base)-48; 
 } 
 
 return tmp; 
} 
 
void fill(char row[ROW_LENGTH]){ //fills the struct ure datagram with the data taken by file 
 char *tmp=row; 
 char *base=row; 
 char *end; 
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 int length=strlen(row); 
  
 /*setting datagram.time*/ 
 if ((end=strchr(row, ' '))<row+length){ 
  datagram.time=toDouble(base, end); 
  base=end; 
 } 
 
 /*setting datagram.sourceIP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  datagram.sourceIP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting datagram.destIP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  datagram.destIP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting datagram.sourceTCP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  datagram.sourceTCP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting datagram.destTCP*/ 
 if ((end=strchr(++base, ' '))<row+length){ 
  datagram.destTCP=toInt(base, end); 
  base=end; 
 } 
  
 /*setting datagram.bytes*/ 
 end=row+length-1; 
 base++; 
 datagram.bytes=34+toInt(base, end); 
} 
 
struct statStruct* searchConn(struct statStruct* DB , struct statStruct *end, int source, int dest){   
      //searches an element in a SAD-like array 
 struct statStruct* tmp=DB; 
 
 while (tmp<end){ 
  if((tmp->sourceIP==source && tmp->destIP==dest) | |  
   (tmp->sourceIP==dest && tmp->destIP==source)) 
   break; 
  else  
   tmp++; 
 } 
 
 if (tmp<end) 
  return tmp; 
 else 
  return NULL; 
} 
 
 
void addConn(){ 
 struct statStruct* which; 
  
 if ((which=searchConn(conn, conn+last, datagram.so urceIP, datagram.destIP))==NULL){ 
  which=searchConn(conn, conn+MAX_EL, 0, 0); 
  which->sourceIP=datagram.sourceIP; 
  which->destIP=datagram.destIP; 
  last++; 
 } 
 
 if ((which->sourceIP==datagram.sourceIP && which-> replied==-1) ||  
     (which->sourceIP==datagram.destIP && which->re plied==1)){ 
  which->sumTime+=datagram.time-which->last; 
  if (which->maxTime<datagram.time-which->last) 
   which->maxTime=datagram.time-which->last; 
  if (which->minTime>datagram.time-which->last) 
   which->minTime=datagram.time-which->last; 
  which->last=datagram.time; 
  which->counter++; 
  which->replied=0; 
 } 
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 else{ 
  if (which->sourceIP==datagram.sourceIP) 
   which->replied=1; 
  else 
   which->replied=-1; 
 
  which->last=datagram.time; 
 } 
  
} 
 
int main(void){ 
 struct statStruct* tmp; 
 long connections; 
 long zero; 
 double totalTime; 
 double maxTime; 
 double minTime; 
 
 last=0; 
 connections=0; 
 totalTime=0; 
 maxTime=0; 
 minTime=7200; 
 zero=0; 
  
 for (tmp=conn; tmp<conn+MAX_EL; tmp++){ 
  tmp->sourceIP=0; 
  tmp->destIP=0; 
  tmp->maxTime=0; 
  tmp->counter=0; 
  tmp->last=0; 
  tmp->sumTime=0; 
  tmp->replied=0; 
  tmp->minTime=7300; 
 }  
  
 infile=fopen("/home/alberto/tesi/simulations/lbl-t cp-3/lbl-tcp-3.tcp", "r"); 
 //infile=fopen("/home/alberto/tesi/simulations/lbl -pkt-4/lbl-pkt-4.tcp", "r"); 
 
 while (fgets(row, ROW_LENGTH,infile)!=NULL){ 
  fill(row); 
  addConn(); 
 } 
 
 fclose(infile); 
  
 for (tmp=conn; tmp<conn+last; tmp++){ 
  if (tmp->sourceIP!=0 && tmp->destIP!=0 && tmp->co unter>0){ 
    printf("%d %d %d %.4lf %.4lf %.4lf\n", tmp->sou rceIP, tmp->destIP, 

 tmp->counter, tmp->maxTime, tmp->minTime, tmp->sum Time/tmp->counter); 
    connections++; 
    totalTime+=tmp->sumTime/tmp->counter; 
    if (tmp->maxTime>maxTime) 
     maxTime=tmp->maxTime; 
    if (tmp->minTime<minTime) 
     minTime=tmp->minTime; 
  } 
  if (tmp->counter==0) 
   zero++; 
 } 
 
 printf ("Average reply time: %.4lf\n", totalTime/c onnections); 
 printf ("Max reply time: %.4lf\n", maxTime); 
 printf ("Min reply time: %.4lf\n", minTime); 
 printf ("Datagram without any reply: %d\n", zero);  
  
 return 0; 
} 


