A Memory Unit for Priority Management in IPSec Accelerators

Luigi Dadda
ALaRI,
University of Lugano
DEI,
Politecnico di Milano,
dadda@alari.ch

Alberto Ferrante
ALaRI,
University of Lugano
ferrante@alari.ch

Marco Macchetti
C.E.C.,
Altran Group
mmacchetti@ceconsulting.it

Outline

IPSec and QoS

The Memory Architecture

Simulations

Conclusions and Future Work

IPSec and QoS
The Memory Architecture
Simulations
Conclusions and Future Work

IPSec

IPSec and QoS

IPSec

Quality of Service

The Memory Architecture

Simulations

Conclusions and Future Work

- Is a suite of protocols
 - adding security at IP (network) level;
- makes extensive use of cryptographic functions;
- requires at least 1 database query for each IP packet.

IPSec

IPSec and QoS

IPSec

Quality of Service

The Memory Architecture

Simulations

Conclusions and Future Work

- Is a suite of protocols
 - adding security at IP (network) level;
- makes extensive use of cryptographic functions;
- requires at least 1 database query for each IP packet.

It is resource consuming.

Quality of Service

IPSec and QoS

IPSec

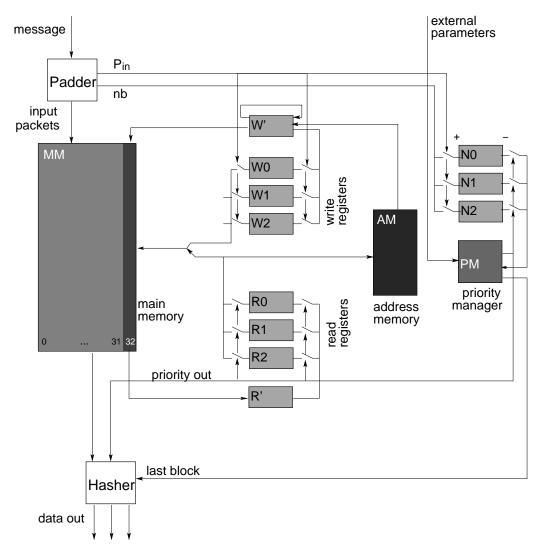
Quality of Service

The Memory Architecture

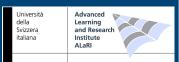
Simulations

Conclusions and Future Work

- ✔ Provide different levels of service to different fluxes of data;
- Managed in different ways:
 - FIFO on incoming packets;
 - Priority Queuing;
 - Custom Queuing;
 - ✗ Flow-based Weighted Fair Queuing.


Architecture of the Memory

IPSec and QoS


The Memory
Architecture
Architecture of the
Memory

Simulations

Conclusions and Future Work

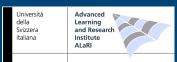
MM: blocks of 16 32-bit words.

Description of the Simulations (1/2)

IPSec and QoS

The Memory Architecture

Simulations


Description of the Simulations (1/2)

Description of the Simulations (2/2)

Simulation Results

Conclusions and Future Work

- ✓ Functional evaluation of the architecture;
- SystemC model:
 - **x** simulates the blocks of the architecture;
 - **★** HMAC-SHA2 was only simulated;
 - **x** rough estimation of performance figures.

Description of the Simulations (2/2)

IPSec and QoS

The Memory Architecture

Simulations

Description of the Simulations (1/2)

Description of the Simulations (2/2)

Simulation Results

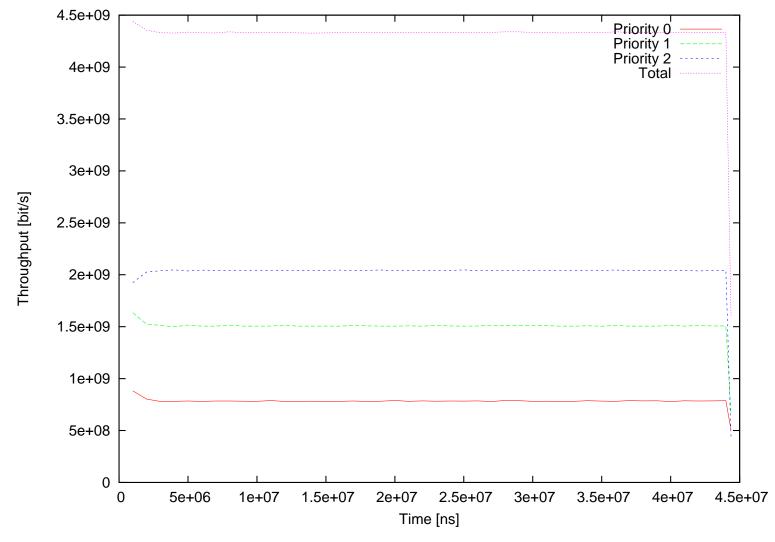
Conclusions and Future Work

- ✓ Real and artificial traces as input; with both:
 - packets distributed in a cyclic way;
 - packets distributed depending on source IP address;
- discard policies:
 - unconditional discarding;
 - proportional discarding;
 - **x** uniform discarding.

Simulation Results (1/2)

IPSec and QoS

The Memory Architecture


Simulations

Description of the Simulations (1/2)

Description of the Simulations (2/2)

Simulation Results

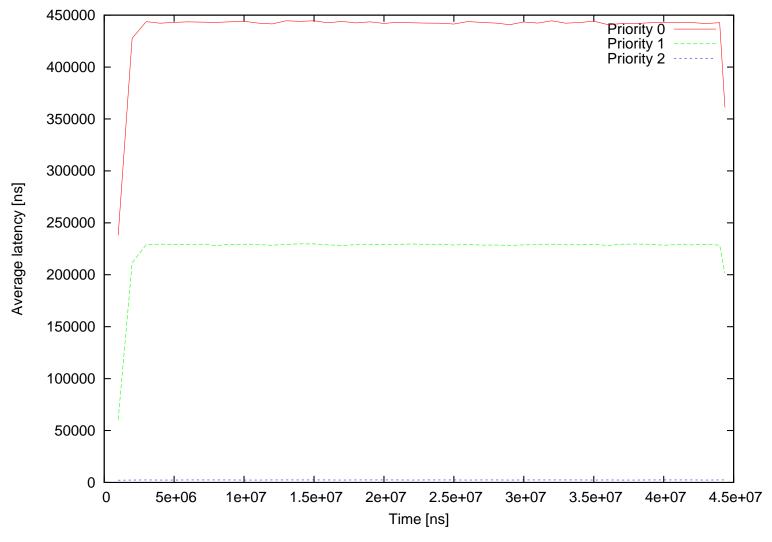
Conclusions and Future Work

Artificial trace; uniform discarding.

Simulation Results (2/2)

IPSec and QoS

The Memory Architecture


Simulations

Description of the Simulations (1/2)

Description of the Simulations (2/2)

Simulation Results

Conclusions and Future Work

Artificial trace; uniform discarding.

Conclusions

IPSec and QoS

The Memory Architecture

Simulations

Conclusions and Future Work

Conclusions

Future Work

- ✓ We designed a memory architecture:
 - * that supports QoS without affecting performance;
 - needs a limited amount of additional hardware (7%);
- we performed functional simulations.

Future Work

IPSec and QoS

The Memory Architecture

Simulations

Conclusions and Future Work

Conclusions

Future Work

- ✔ Perform accurate simulations:
 - different cryptographic algorithms;
 - lower level simulations;
- derive performance figures for different QoS policies.