This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

A Memory Unit for Priority Management
in IPSec Accelerators

Luigi Dadda
ALaRI, University of Lugano
Lugano, Switzerland
DEI, Politecnico di Milano
Milano, Italy
Email: dadda@alari.ch

Abstract— This paper introduces a hardware architecture for
high speed network processors, focusing on support for Quality
of Service in IPSec-dedicated systems. The effort is aimed
at defining a secure system on chip environment, where the
speed and security requirements are of utmost importance. In
particular, a method is devised to introduce and support Quality
of Service through priorities at this level. An architecture of a
memory system that provides automatic priority management is
proposed.

I. INTRODUCTION

The constant growth of the Internet and the undeniable
importance of on-line services in every-day life and in the busi-
ness world, generate new engineering problems. Bandwidth
obtainable with current interconnection techniques (40Gbit/s
for a single fiber-optic link and well beyond by using wave
multiplexing) largely exceeds the bandwidth supported by
network apparatus; therefore, several technical issues must be
solved to adapt the communication devices (routers, gateways,
servers) to operate at this speed. In fact the bandwidth request
is growing even faster than the interconnection bandwidth.

In this paper we address the problem of providing Quality
of Service (QoS) for fast secure communications. Here we
concentrate on a hardware architecture for QoS management in
an IPSec [1] environment. We present a memory architecture
that enables QoS management in IPSec flow-through acceler-
ators. Flow-through accelerators are placed on the data path;
therefore, all the network-related data flows through them.

Nowadays specialized memory architectures are largely
utilized; for example, content addressable memories (CAMs)
are highly utilized in network apparatus. To our knowledge,
no specialized memory structure exists for the purpose of
supporting QoS. The memory architecture that we propose
in this paper provides the ability to support QoS without any
performance loss. The other great advantage of this architec-
ture is the total lack of memory fragmentation. This problem
may easily occur in any network related system due to packets
having very different sizes. Supporting QoS through priority
queues also introduces the problem of correctly dimensioning
the memory allotted to each priority level. Fix dimension
queues may not be the best choice due to possible variability
in traffic related to each level. Our memory system natively

Alberto Ferrante
ALaRI
University of Lugano
Lugano, Switzerland
Email: ferrante@alari.ch

Marco Macchetti
CE.C.
Altran Group
Milano, Italy
mmacchetti @ceconsulting.it

supports dynamic queue resizing. The hardware support struc-
ture is mainly composed of some registers and of an additional
small memory for the free memory block addresses.

As explained in the next section, a certain number of
complex protocols and algorithms need to be used together
to create a Virtual Private Network (VPN). Due to space
constraints we do not discuss all of them here. In this paper
we also do not deal with jumbo packets. These packets - that
can be up to 4Gbyte long in IPv6 - might need to be processed
in a different way than the one presented in this paper.

In Section II we describe the main technologies involved
in VPN creation; in the same section we also give a brief
overview of network Quality of Service (QoS). In Section III
we describe the architecture of the memory system that allows
for QoS management. In Section IV we show the model we
have used for simulations and we discuss the results we have
obtained.

II. VIRTUAL PRIVATE NETWORKS
A. Virtual Private Network Technologies and Protocols

Virtual Private Networks (VPNs) provide the ability to
support communications on a shared mean (e.g., the Internet)
in a secure way: secure protocols are used to build secure
communication channels; machines connected to these chan-
nels can act as they were connected to a private network.
Therefore, a private network is virtually built over a public
one [1], [2].

A typical application for the VPN technology is to connect
two private networks. This configuration is often used when
two or more seats of the same company need to communicate
and to share information. In each VPN there is one funda-
mental network component, the secure gateway. This machine
manages the secure communications and it usually implements
a firewall, a gateway, and a VPN server.

VPNs are created by associating two different protocols,
one for data security and one for emulating a point to point
connection. The latter is for routing privately addressed pack-
ets through a publicy addressed infrastructure. This task is
usually performed by layer 2 tunnelling protocols. The most
used point to point protocols are L2TP [3], [4], PPTP [5], and
L2F [6].

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

To date the most widely used secure communication proto-
col for VPNs is IPSec. This protocol supports the creation
of secure tunnels in a native way and it was thought for
being used on secure gateways. IPSec is mainly composed of
two protocols, Authentication Header (AH) and Encapsulating
Security Payload (ESP). The former allows authentication of
each IP datagram’s headers or — depending on the operational
mode that has been selected — of the entire IP datagram.
The latter allows encryption — and optionally authentication
— of the entire IP datagram or of the IP payload, depending
on the operational mode that has been selected, namely the
transport and the tunnel modes. The former was designed
for being used in host machines, the latter is for secure
gateways. In tunnel mode the entire original IP datagram is
processed; the result becoming the data payload of a new
IP datagram with a new IP header. In transport mode only
parts of the original IP datagram are processed (e.g. the data
payload for the ESP protocol) and the original IP header
is kept with some small modifications. Through encryption,
authentication, and other security mechanisms included in
IPSec (e.g. anti-reply), data confidentiality, data authentication,
and peer’s identity authentication can be provided [7], [8], [9].
In each of the protocols within the IPSec suite, many choices
for cryptographic algorithms are available (for example AES,
DES, Triple-DES, and many others can be used within the
ESP protocol).

The concept of Security Association (SA) is fundamental to
IPSec. A Security Association is a simplex “connection” that
afford security services to the traffic carried by it [10]. To se-
cure typical bi-directional communications between two peers,
two SAs (one in each direction) are required. Security services
are afforded to a SA by the use of AH, or ESP, but not both.
Security association establishment may be performed through
a protocol named Internet Key Exchange (IKE) [9], [11].
Two databases are involved in processing IP traffic relative
to security associations. These two databases are the Security
Policy Database (SPD) and the Security Association Database
(SAD). The former specifies the policies that determine the
disposition of all IP traffic. The latter contains parameters
that are associated with each SA. For each packet traversing
the IP communication layer, the SPD needs to be queried.
If, in conformance with the SPD, an IP datagram needs to
be processed by IPSec, the SAD needs also to be queried
to discover the parameters of the considered SA. Information
about whether a SA has already been created or not are
contained in the SPD. If a suitable SA for the IP datagram
to be processed does not exist, it needs to be established,
for example through IKE. The inbound and outbound security
policies as well as the inbound and outbound SAs must be
kept in separate databases.

As previously said, VPN deployment involves the use
of different protocols and algorithms. Different tasks to be
performed spread from query of databases to cryptographic
algorithms, the latter usually being the most resource con-
suming ones: they are considered to be at least two order
of magnitude more complex than any other algorithm used

in networking applications. Some performance measurements
for IPSec are provided in [12], [13]. All of these evaluations
mainly concentrate on traffic processing capabilities without
considering other problems such as query of databases. All
these documents anyway show that software implementations
of IPSec are too slow for allowing support for multi-gigabit
networking. Even when the necessary network speed can be
supported, the CPU usage is very high. Therefore running
other tasks such as the ones that are necessary for the layer 2
tunnelling protocols or routing functionalities becomes unfea-
sible. We also have to consider that query of the databases are
quite frequent as the SPD must be queried for each IP packet.
In [14] the final proof that just accelerating cryptographic
functionalities is not enough is provided. In fact, in that paper
a maximum throughput of 45Mbit/s is obtained when IPSec
is implemented on a IXP 425 network processor.

The actual trend is to move toward flow-through solutions
for IPSec. IPSec packets are processed by a dedicated IPSec
processor and passed to upper network processors [15]. These
network processors may be totally unaware of the IPSec
processor since incoming and outgoing traffic is formed by non
IPSec-protected IP traffic. The flow-through solution has many
advantages, one of them is to allow improving the overall
system efficiency and therefore performance.

B. Quality of Service

The network Quality of Service (QoS) is the ability to pro-
vide different levels of service to different fluxes of data [16],
[17]. This is usually obtained by assigning different priority
levels to these fluxes. The priority levels are determined at
network level and, in IPv4, they may be associated to each
IP datagram by using a 3-bit header field. In IPv6 the size
of this field has been increased to 12 bits, thus allowing to
support more priority levels [18]. Priorities can be managed
in different ways. The simplest one is to use a First In First
Out (FIFO) policy on the incoming packets, but other more
effective ways exist: Priority Queuing (PQ), Custom Queuing
(CQ), Flow-based Weighted Fair Queuing (WFQ), and Class-
based Weighted Fair Queuing (CBFQ) are the most used ones
[16] .

It is important to note that QoS is only useful in congestion
management. When no congestion is experienced on the
system, QoS does not introduce any benefice over the flux
management and over the performance. The concept of QoS
has to be supported at system and at network level.

QoS has been assuming an increasing importance in the
VPN environment, as services requiring real time support
such as voice over IP are emerging. So far QoS has been
supported only for local networks or, at best, for intra-provider
communications through Service Level Agreements (SLAs).
The trend is now to develop inter-provider QoS, but this poses
some challenges such as the ones described in [19], [20], [21].
VPNs, most of all, are driving the request for this extension
of QoS in inter-provider communications.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

external
message parameters
Pin
Padder|
nb
input
packets
v + _
I -
(2]
1
[OR7]

priority
manager

main
memory

address
memory

read
registers

32]

priority out

last block

Hasher|

data out

|

Fig. 1. The architecture of the memory for priority management (MQM).
P;,, is the priority of the packet being input.

TABLE I
EXAMPLE OF A 16-ADDRESS AM WHEN ADDRESSES ARE MANAGED IN
LIFO wAY.

o 1lo” 1o Jo* ilo° ilo" ilo® i
1111 1111 1111 1111 111 |® 1114 | © —-@
1110 1110 1110 1110 1110 e
1101 1101 1101 1101 1101 _— -—
1100 1100 1100 1100 1100 — -—
1011 1011 1011 1011 1011 _— -
1010 1010 1010 1010 1010 J— —
1001 1001 1001 1001 1001 — e
1000 1000 1000 1000 1000 _— -—
0111 0111 0111 0111 0111 —— -—
0110 0110 0110 0110 0110 — —
0101 0101 0101 0101 0101 —_— _—
0100 0100 0100 0100 0100 - —-—
0011 0011 0011 0011 0011 - -
0010 0010 | ® 0010 0010 0010 —-—— -—
0001 ® 0001 ———— ®| ® (0000 0000 —_— _—_

e 0000 0] ——— @] -——- ———— o/ @ 0001 © i -

———— do not care about cell contents
O output address pointer
| input address pointer

® an active pointer
O a non active pointer

III. THE PROPOSED ARCHITECTURAL SOLUTION

We describe the architecture of a memory unit suitable for
storing several queues of messages. Each queue is charac-
terized by a given priority level. The memory is organized
in blocks of 16 words; these blocks are linked according to
the message to which they belongs and to their priority. Each
memory block can be associated to different priority levels in
different periods of time (blocks cannot belong to different
priority queues at the same time). Once freed, memory blocks
can be reused in any of the priority queues. This leads to an
optimal use of the memory without the need of any memory
defragmenting operation. Moreover there is no predetermined
memory space allotted to the different queues and this gives

full flexibility in matching the capacities required for them in
different instants of time. This properties can be obtained by
adding some hardware to a system without QoS management.
The cost of this hardware appears to be well compensated by
the advantages obtained.

The architecture of the priority management system called
Message Queues Memory (MQM) is shown in Figure 1.
We assume here that each IPSec packet has a priority level
associated with it. A discussion about how to attribute priority
levels to packets is outside the scope of this paper. Each
message is subdivided in blocks of 16 words of 32 bits and
written in the Main Memory (MM). The length of the packet
in blocks, nb, is added to the content of the N, register.

The principle on which the MQM operates can be described
as follows. Assume that the first block of the first message of
one of the queues is placed anywhere in the memory. The
address of the first word of the block (the 1st word of the
block) is given by a binary integer whose last four bits are
“0”. The remaining 15 words are addressed by changing those
four bits to: 0001, 0010,..., 1111.

We assume as a working example that the full-address of
each word, i.e. the word address, is composed by 20 bits (i.e.
the memory capacity is 22° words). It can be partitioned in:

o the 4 least significant bits composing the in-block ad-

dress;

o The 16 most significant bits composing the block address,

common to all full addresses of a block words.

To each memory word we add a bit (the 33rd) that allows to
store the address of the next block of the packet. This address
is recorded during the write process. The full address of the
next block will be available when the last word of the block
is read, so that the next block can be addressed. Two of these
16 bits are used to identify the first and the last block of a
packet. With the above assumptions, the number of addressable
blocks in the memory will be 2'* (16, 384) that is equivalent
to 1,048,576 bytes. The addition of a 34th bit in each word
could be used to increase the memory capacity, if necessary.

Note that all blocks and all messages linked to the first
address constitute a queue. Additional queues can be obtained
by adding new “first blocks” that are not belonging to any
of the other queues. For this a unit capable of managing the
list of the unused addresses is required. This functionality
is provided by the Address Memory (AM) of Figure 1. AM
outputs addresses of free blocks; addresses of released blocks
are written back to AM.

We will now show the operation of the system with some
more details. Let us consider the initial phase, where registers
Wo, Wi, and Wy will be filled with addresses taken from
AM. Registers Ry, R1, and R, will take the values stored in
Wo, W1, and W, respectively. Ry, R;, and R, contain the
addresses of the first blocks of each queue and will be changed
(automatically) during the reading phase (each message queue
is managed by a First In First Out — FIFO — policy).

Let us now see how incoming blocks are stored in the
different priority queues, and how those blocks can be read
and sent to the cryptographic unit (i.e., the operational phase).

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Assume that a block having priority O is input to MM. The
priority index (F;,) will operate on the switches for selecting
the appropriate registers, i.e., in this case, the registers W)
and Ny. Simultaneously an address will be sent from AM to
register W’. The successive 16 words of the input block will
be stored in MM, the block address being given by W, the
in-block addressing being generated within MM. During this
process, the successive 16 bits of W’ will be stored along the
successive block words in the 33rd bit of the same words. The
circulation around W’ operates as a (left) shift to obtain at the
output (at its left) the successive bits to be recorded. Note that
registers W;, at the beginning of the operational phase, store
the addresses of the first block in the queues characterized by
p = j. At the end of the store process, W' is transferred (in
parallel) into W}, W’ being the address of the next block in
the same queue.

Let us suppose that we want to read just one block in queue
0. Register Ry will address the first word of the block and,
by increasing its last four bits by 1 at each clock, all the
remaining 15 words. On reading the successive words we will
store in a register R’ the bits constituting the address of the
block following the one that is being read. R’ will be then
transferred in Ry for reading a second block of same queue.

Note that while registers W; are selected according to the
priority assigned to the message to be written in MM, registers
R(), Rl, and R2 and the I'ight -1 inputs to N(], Nl, and N2
are controlled by the Priority Manager (PM).

Any address obtained from AM is first stored in W' then
transferred to W; and to the block itself; this address is then
transferred in R’, then in R; and finally back to AM, (not
necessarily in the same cell of origin).

The input to R’ is derived serially from the 33rd bits of the
block words; the end of block signal can be derived from
the four stage counters producing the xs3, 2, x1, and xg
generating the addresses of the 16 words block (precisely at
the transition from 1111 to 0000 values). Suppose we now
want to input another block which has the same priority. This
will be done by following exactly the procedure described for
the first block.

Note that the only blocks initially assigned to the different
priorities are the ones whose address have been written in the
initial phase. If a certain priority level is never used by the
incoming messages, the respective first block will never be
used too. This is a price to be paid for the flexibility obtained.

Addresses stored in AM need to be managed in a proper
way. As explained before, addresses are taken out from AM
and written back to AM when the corresponding memory
blocks are freed. We use two pointers, one for the address to
output, and another one for the address to be written back. Ev-
ery time an address is output by AM, both pointers are moved
by one position. Since the two pointers move synchronously
up or down they can be implemented by a single up-down
counter. By adopting this mechanism, addresses are output in
a LIFO (Last In First Out) order. The output pointer references
the head of the LIFO; the input pointer references the first
free cell after the head of the LIFO. A decoding network for

each possible position of the input-output pointers couple is
required.

Table I shows the behavior of AM. The different columns
show the contents of the memory and the position of the
input and output pointers in different instants of time. In
column a the input (I) and the output (O) pointers are at
the bottommost position. I is non active as the memory is full
and no further addresses can be written in AM. In column b, 1
and O have been moved one step up; address 0000 has been
output; therefore, I has become active. Column ¢ shows the
same behavior for the address 0001. In column d the address
0000 has been released and therefore it has been written back
in AM; consequently, I and O have been moved one step
down. The same happens in column e with the address 0001;
I has become inactive as the memory as become full. Column
f shows AM when just one memory address is available.
Column g shows AM when no memory addresses are available;
therefore, O has been put in the inactive state.

A FIFO policy can be also implemented instead of the LIFO
one. Two mono-directional counters are required for this. After
an address is output, the output pointer steps upward; after an
address is written in the AM the input pointer steps upward
pointing to an empty cell. When both pointers are pointing to
the same full cell the output pointer prevails.

The priority management scheme presented above, requires
some additional hardware to be implemented. AM — which
is 1/32 of the data part of MM — needs to be introduced. In
MM an additional bit for each 32-bit word of data is required.
Therefore, another 1/32 of its size need to be added. Eleven
32-bit memory elements are also required for the N, R, and
W registers. Roughly, by introducing this QoS management
system, we enlarge the memory by the 7% of its normal size.
Note that the influence of this additional hardware would be
halved if a SHA2-512 algorithm was considered (the size of
the blocks would be twice the one considered for SHA2-256).

IV. SIMULATION OF THE QOS MANAGEMENT UNIT

The architecture that we described in the previous section
has been simulated by means of a SystemC [22] model.
Using this language, hardware-software systems can be easily
modeled and simulated.

The first goal of this model is to provide a functional
evaluation of the QoS management mechanism and of the
memory. For this reason only the HMAC-SHA2 [23], [24]
cryptographic functionality has been implemented. In real-
life systems at least a symmetric cryptographic algorithm
(e.g., AES) is also required. In any case, the HMAC-SHA2
algorithm is the one with longer computational times per data
block among the ones that can be used in IPSec systems.
See [25] for an example of a SHA2 implementation. The
simulations also allowed to obtain some rough estimations of
performance figures. The next subsections show the model and
the results of the simulations.

A. The SystemC Model

The SystemC model describes the different parts of the
architecture that has been presented before along with a

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

HMAC-SHA?2 processing module. Each one of these units
have been implemented by different SystemC classes: MM,
AM, control_block, and HMAC. The control block has two
different parts: the first one writes data blocks to memory,
while the other one reads them. The model works as follows:

1) the control block receives input packets and write them
to the memory (by means of the write function) in FIFO
order;

2) the HMAC block requests blocks to be processed to the
Control Block; this unit provides blocks of the suitable
priority level;

3) data blocks are processed by the HMAC block and the
result is output.

Three different packet discarding policies have been imple-
mented in the write function. These policies are used when the
system is saturated and incoming packets need to be discarded.
The policies that have been considered are: unconditional
packet discarding, proportional packet discarding, and uniform
packet discarding. When the first policy is adopted packets
are discarded regardless their priority level. When the second
policy is adopted, packets are discarded when the memory
occupied by other packets of the same priority level is higher
than a certain limit called f,. The fraction of memory available
for the priority level p when P different levels are considered

is

[

il

When the third policy, the uniform discarding one, is adopted,
packets are discarded when the quantity of memory occupied
by other packets of the same priority level is higher than f =
1/P. Therefore, the fraction of the memory available to each
priority level does not depend on the level itself, but just on
the number of levels that are considered.

The priority level of the packets to be processed by the
HMAC block is determined by the read function of the con-
trol_block. The priorities are changed following a proportional
round robin scheme. During each round robin cycle, at each
priority level is given a certain number of processing slots (i.e.
data blocks). This number is proportional to the priority level.
In our simulations, each priority level is allowed to process
up to 10 x (p + 1) blocks per each round robin cycle.

The inputs of the simulations are managed by the testbench
class; this class reads packets from a binary data file and calls
the write function of the control block. No interarrival time is
considered for packets (worst case) and the network speed (i.e.
the delays to be applied in the testbench class) is determined
by the time required to receive each byte of the packets. The
input data file has been obtained by considering artificially
generated packets along with their HMACs and their keys.
The lengths of these packets are read from network trace files.
We have used two of them: an artificially generated one and
a real life one. In the artificially generated one, packets of the
same size are replicated on different IP addresses. The real
life trace file has been chosen from the ones available on the
Internet Traffic Archive website [26]. Two different ways for

4.5e+09 T

,,,,,,,,, _ Pricrity 0
Priority 1
4e+09 Priority 2
Total -
3.5e+09
z 3e+09
3
B 25409
[
=
2
£ 2e+09 /
L5409 [l d o
le+09 - *

5e+08

0 S5e+06 1le+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5¢+07 4e+07 4.5e+07

Time [ns]

Fig. 2. Throughput obtained for the different priority levels when the artificial
trace with cyclic distribution of priorities is considered. The discarding policy
is the unconditional one.

4.5e+09 T T T
— e Priopity-0--
Priority 1
4e+09 Priority 2 -
Total -
3.5e+09
_ 3e+09
)
=
= 25e+09
E]
[
=
] 2e09 [R —
é :
1.5e+09
le+09 i‘
U S P ‘i
Se+08 :

0

0 S5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07

Time [ns]

Fig. 3. Throughput obtained for the different priority levels when the artificial
trace with cyclic distribution of priorities is considered. The discarding policy
is the uniform one.

distributing packets among the different priority levels have
been considered both for the artificial and for the real traces:
packets distributed in a cyclic way (the 1st packet is assigned
to priority O, the 2nd to priority 1 and so on) and packets
distributed depending on their source IP address (IP address
modulo the number of levels).

B. Simulation Results

As explained before, the main goal of these simulations was
to perform some functional verification of the priority man-
agement architecture. Some performance figures can anyway
be roughly estimated. Sixteen different simulations have been
performed to consider all the different discarding policies that
we have discussed above. All of them have been simulated
both with the artificially generated traces and with the real
ones. Both of the methods for distributing priorities among
packets have been considered. The real network trace with
an IP address based distribution of priorities gives closer to
the reality results. The artificial trace with cyclic distribution

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

of packets among priorities provides an easiest evaluation of
simulation results.

Figure 2 shows the throughput obtained for the artificial
trace with an uniform distribution of packets among the dif-
ferent priority levels. In this figure an unconditional discarding
policy has been considered. In this case the throughput is
practically the same for all the priority levels. This is due to
the fact that the memory becomes very soon saturated by the
blocks of the lower levels of priority. In fact, many of these
packets need to be stored in memory, since higher priority
level packets have more processing slots per cycle. By using
a proportional or an uniform discarding policy, priorities are
managed in a more effective way as shown in Figure 3. In
fact, in this case the throughput obtained clearly depends on
the considered priority levels. The lower levels are the ones
obtaining lower throughput. The main difference in terms of
performance among the proportional packet discarding, and
the uniform packet discarding policies is in the number of
discarded packets and in the processing latency for each level.
The uniform discarding policy gives a better distribution of
processing latencies among priorities. The processing latency
obtained for each of the levels when this policy is adopted,
is proportional to the level itself. Higher priority packets are
processed with lower latencies. The proportional discarding
policy allows to discard packets in a way that is more respect-
ful of the priority levels, at least when the real network trace is
considered. When an artificial trace with uniform distribution
of priorities is utilized, both of these policies are equivalent
from the packet discarding view point.

V. CONCLUSIONS AND FUTURE WORK

In this paper we provided a hardware architecture for
supporting quality of service in an IPSec accelerator. We
also provided some simulations which prove that the priority
management mechanism — which is mainly composed by
a specifically designed memory — works as desired. The
results obtained by simulations, show that packet discarding
policies are fundamental to obtain good results with any QoS
management system.

Lower level and, therefore, more precise simulations need to
be developed to better estimate the device performance. At the
moment only a HMAC algorithm has been simulated; future
work includes simulations with encryption algorithms. The
discarding policies, the algorithm parameters (e.g., the round
robin cycle), and their interactions with priority management
policies will be further studied and improved.

REFERENCES

[1] R. Yuan and W. T. Strayer, Virtual Private Networks.
2001.

[2] J. Feghhi and J. Feghhi, Secure Networking with Windows 2000 and
Trust Services. Addison Wesley, 2001.

[3] Layer 2 Tunnelling Protocol. Cisco. [Online]. Avail-
able: http:///www.cisco.com/univercd/cc/td/doc/product/software/ios120/
120newft/120t/120t1/12tpt.htm

[4] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter,
“Layer Two Tunneling Protocol "L2TP” - RFC 2661,” IETF RFC, Aug.
1999.

Addison Wesley,

[5]

[6]
[7]
[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

(21]

[22]
(23]
[24]

[25]

[26]

K. Hamzeh, G. Pall, W. Verthein, J. Taardu, W.A. Little, and G. Zorn,
“Point-to-Point Tunnelling Protocol (PPTP) - RFC 2637,” Tech. Rep.,
July 1999.

A. Valencia, M. Littlewood, and T. Kolar, “Cisco Layer Two Forwarding
(Protocol) L2TF - RFC 2341,” Tech. Rep., May 1998.

S. Kent and R. Atkinson, “IP Authentication Header — RFC2402,”
IETF RFC, 1998. [Online]. Available: http://www.ietf.org/rfc.html
——, “IP Encapsulating Security Payload (ESP) — RFC2406,” IETF
RFC, 1998. [Online]. Available: http://www.ietf.org/rfc.html

D. Harkins and D. Carrell, “The Internet Key Exchange (IKE) —
RFC2409,” IETF RFC, 1998. [Online]. Available: http://www.ietf.org/
rfc.html

S. Kent and R. Atkinson, “Security Architecture for the Internet
Protocol — RFC2401,” IETF RFC, 1998. [Online]. Available:
http://www.ietf.org/rfc.html

C. Kaufman, “Internet Key Exchange (IKEv2) Protocol — RFC 4306,”
IETF RFC, Dec. 2005. [Online]. Available: http://www.ietf.org/rfc.html
Alberto Ferrante, Vincenzo Piuri, and Jeff Owen, “IPSec Hardware
Resource Requirements Evaluation,” in NGI 2005. Rome, Italy:
EuroNGI, 18 Apr. 2005.

S. Ariga, K. Nagahashi, M. Minami, H. Esaki, and J. Murai, “Per-
formance Evaluation of Data Transmission Using IPSec Over IPv6
Networks,” in INET, Yokohama, Japan, July 2000.

Yi-Neng Lin, Chivan-Hung Lin, Ying-Dar Lin, and Yuan-Chen Lai,
“VPN Gateways over Network Processors: Implementation and Eval-
uation,” in Proceedings of the 11th IEEE Real Time and Embedded
Technology and Applications Symposium (RTAS 05), IEEE Computer
Society Press, Ed. IEEE, Mar. 2005.

R. Friend, “Making the Gigabit IPSec VPN Architecture Secure,” I[EEE
Computer, vol. 37, no. 6, pp. 54-60, 06 2004.

Sean Convery, Internetworking Technologies Handbook. Cisco Press,
19 Apr. 2004, no. ISBN158705115X, ch. 49, pp. 49-1 — 49-32.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,
“An Architecture for Differentiated Services — RFC2475,” IETF RFC,
Dec. 1998. [Online]. Available: http://www.ietf.org/rfc.html

S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification — RFC2460,” IETF RFC, Dec. 1998. [Online]. Available:
http://www.ietf.org/rfc.html

Philip Jacobs and Bruce Davie, “Technical Challenges in the Delivery
of Interprovider QoS,” IEEE Communications Magazine, vol. 43, no. 6,
pp. 112-118, June 2005.

Luyuan Fang, Nabil Bita, Jean-Luis Le Roux, and Jaime Miles, “In-
terprovider IP-MPLS Services: Requirements, Implementations, and
Challenges,” IEEE Communications Magazine, vol. 43, no. 6, pp. 119—
128, June 2005.

Michael P. Howarth, Paris Flegkas, George Paviou, Ning Wang, Panos
Trimintzios, David Griffing, Jonas Griem, Mohamed Boucadair, Pierrick
Morand, Abolghasem (Hamid) Asgari, and Phanos Georgatsos, “Provi-
sioning for Interdomain Quality of Servuce; the MESCAL Approach,”
IEEE Communications Magazine, vol. 43, no. 6, pp. 129-137, June
2005.

“SystemC Official Website.” [Online]. Available: http:/www.systemc.
org/

Descriptions of SHA-256, SHA-384, and SHA-51. [Online]. Available:
http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf

H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication — RFC 2104,” Tech. Rep., Feb. 1997.

L. Dadda, M.Macchetti, J. Owen, and S. Chakrabarti, “An ASIC Design
for a High Speed Implementation of the Hash Function SHA-256 (384,
512),” in GLSVLSI 2004, Boston, Apr. 2004, pp. 421-425.
(2000) The Internet Traffic Archive. [Online]. Available:
/lita.ee.1bl.gov/

http:

	Select a link below
	Return to Main Menu

