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Abstract

Self-adaptivity is the capability of a system to adapt itself dynamically to achieve
its goals. Self-adaptive systems will be widely used in the future both to efficiently
use system resources and to ease the management of complex systems. The frame-
works for self-adaptivity developed so far usually concentrate either on self-adaptive
software or on self-adaptive hardware, but not both.

In this paper we propose a model of self-adaptive systems and we describe how
to manage self-adaptivity at all levels (both hardware and software) by means of a
decentralized control algorithm. The key advantage of decentralized control is in the
simplicity of the local controllers. Simulation results are provided to show the main
characteristics of the model and to discuss it.
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1 Introduction

Self-adaptivity is the capability of a system to adapt itself dynamically to
achieve its goals. Goals are specified by programmers or by users and define
application requirements at high-level (i.e., as human readable requirements,
such as, for example, throughput). By defining requirements self adaptive com-
putational systems have the ability to adapt themselves to mutating internal
and external conditions [20] without requesting any intervention of the user.

* Authors appear in alphabetical order.

Preprint submitted to Elsevier 7 July 2008



Self-adaptation capabilities are used to implement autonomic and life-inspired
systems: the increasing complexity of components and the difficulties of their
integration are pushing the designers toward self-managing systems. These
systems will have the ability to self-adapt and self-configure to provide the
performance and the quality required [16] [14]. Self-adaptive devices can be
utilized in pervasive systems to cope with mutating environmental conditions.
For example, a portable device may be frequently moved from an office en-
vironment (where power and network plugs are available) to an external en-
vironment (where the device can only be battery operated and the network
may be available in different wired or wireless forms). In this case the be-
havior of different hardware and/or software components of the system needs
to be adapted to the new conditions (e.g., to reduce power consumption).
Furthermore, different functionality may be proposed to the user in the new
environment.

Self-adaptation can be supported by the software (in the applications, in the
operating system, or both) or by the hardware. In a system both hardware
and software components may be self-adaptive and each part may or may
not have the knowledge of the possible self-adaptivity of other parts. For
example, specific functions can be mapped on the hardware at run-time to
optimize the execution of certain applications. The management of hardware
or software self-adaptivity is a complex task as different conflicting goals may
need to be considered. Jointly managing hardware and software self-adaptation
is of course even more complex. Furthermore, a unified self-adaptation con-
troller, would impose a close cooperation between hardware and software.
Thus, it would be difficult to provide portable self-adaptive applications. A
self-adaptive system lives in an environment which can be defined as the com-
plementary set of the self-adaptive system (i.e., all the things surrounding
the system). Self-adaptation can be triggered by different events, like changes
in the environment, changes in the applications to be executed, or changes
in the system operational conditions (e.g., a battery operated system detects
a change in the battery status, or a component that becomes faulty). Self-
adaptivity not only provides functional and operational benefits, but it also
allows for self-healing. In fact, a faulty hardware or software component will
be automatically replaced (if replacements are available) to keep satisfying the
application goals.

This paper provides a comprehensive approach to self-adaptivity management.
The target of this a approach is the model of self-adaptive system described
in Section 3. This model, as shown in Section 2, is general enough to include
many of the self-adaptive systems already discussed in the literature and to
consider a comprehensive approach to self-adaptivity both in hardware and
in software components. The model implies a subdivision of the self-adaptive
system in different macro-layers named software and hardware. The software
macro-level is further divided into two levels: the former is for software appli-



cations; the latter is for providing an uniform interface between hardware and
software applications. The framework aims at providing a control mechanism
that is both simple and efficient. The simplicity is reached by using separation
of concerns and decentralization of control. The efficiency is reached by adopt-
ing a coordination mechanism, called recommendation system, among the con-
trollers. The paradigm used for self-adaptation management at all levels is the
monitor-controller-adapter (MCA) one. In this paradigm each component is
endorsed a different role: the first one monitors the parameters of interest, the
second one decides on possible self-adaptations, and the third one enforces
them. Some simulations are presented in the paper to show the properties of
the recommendation system and to provide a ground for discussing the model.

The remaining part of the paper is organized as follows: Section 2 gives an
overview of related research about self-adaptivity in hardware and in software;
Section 3 presents our model; in Section 4 the results of model simulations are
shown and discussed.

2 Related Work

Looking at previous works, it is possible to see some similarities and differ-
ences. As the most prevalent technique for self-adaptation, we see the use of
the monitor-control-adapter paradigm. In an effort to classify the existing so-
lutions, we identify four main design decisions: Adaptation coverage is defined
by the parts of the system affected by adaptations. Majorly it may consist
of hardware, software, part of a distributed system (through adaptive middle-
ware) or any combination of them. Separation of concerns is a design principle
that decouples the functionality of the system from the implementation of its
adaptation. Adaptation management is the decision making process on the
evolution of the system. Adaptation requirements specification is the form of
describing the non-functional requirements of the system. In the remaining
part of this section we provide an overview of publications related to self-
adaptivity, classified according to their most prominent characteristics in the
view of these categories.

2.1 Adaptation coverage

A number of works addresses self-adaptivity in software; the simplest ap-
proach adopted is to manage adaptation in the application code. Although
this approach enables the development of ad-hoc solutions for specific adap-
tation problems, it is clearly not flexible enough to support a wide range of
adaptations. The use of an architecture-based approach eases self-adaptivity:



the system is viewed as a composition of concurrent components intercon-
nected by connectors. A comprehensive adaptation methodology is presented
in [20]. The authors propose an evolution and adaptation management in-
frastructure. The evolution management process adapts the architecture and
the topology of the components and of the system; the adaptation manage-
ment process gathers information from the operating environment, evaluates
the observations with respect to the system requirements, plans and deploys
adaptation changes. Moreover the need of composable components is under-
lined. Another work describing a component-based architectural approach is
presented in [9]. The authors propose a framework that is both reusable, to
cope with a large set of systems, and that supports mechanisms to specialize
the infrastructure for specific cases. To achieve such objectives, the framework
is divided into two logical parts: an adaptation infrastructure and a system
specific adaptation model. The former provides common functionality that is
reusable across different self-adaptive systems; the latter is specific to a certain
system and it is used to tailor the entire framework for it. In [2] an architecture
description language named ArchWare is modified to support self-adaptation.
Feedback obtained by means of software probes is used to control software
self-adaptations.

A formal approach to the design of adaptive software is introduced in [23|
where an architecture-based approach is not considered. In particular, the
adaptation is conceived as a state transition from a source program to a target
program inside of a suitable set of adaptation states. Each adaptive software is
represented by a state machine, where each state exhibits a different behavior
and operates in a certain domain. To guarantee system integrity and consis-
tency, local and global properties (requirements, constraints, and invariants)
that should be satisfied by an adaptive program for every state change are
introduced.

Self-adaptation has been addressed in distributed systems for the management
of quality of service (QoS) mostly through adaptive middleware mechanisms
and custom adaptation management protocols. A control theory approach to
QoS is proposed in [3], [4]. In the first paper, the authors introduce a pas-
sive adaptation task mechanism, located in the middleware level to support
application-specific adaptation. Basically, passive adaptations can be viewed
as transformations of the data input stream incoming into a task (e.g. a soft-
ware component) to fit a requires QoS. The middleware performs adaptation
between applications and the transport layer based on certain QoS metrics.
In the second paper, the same authors extend and improve such a mechanism
to balance and support both application-specific adaptations and system-wide
requirements, such as stability and fairness. In [10] a mirror-based reflection
approach for self-adaptivity is proposed. By definition, a reflective system is
able to perform computations about itself; moreover, it provides introspection
and control through a reflective interface. By applying this reflective mecha-



nism to software components, the middleware can perform self-adaptation by
using the reflective interface of each component. Adaptation behavior, archi-
tecture and implementation of a component can be specialized to fit a specific
context by annotating each implementation with quality of service metrics.
Therefore, the middleware uses such quality of service metrics to trigger the
adaptation of components.

In [1] an approach for managing quality of service grid systems is presented:
system resources are managed in an adaptive way both to satisfy the quality of
service requirements and to use the resources efficiently. Thus, self-adaptivity
is in the process management software included in the operating system of
each node. In [8] a similar approach is used to provide network quality of ser-
vice. The self-adaptivity is included in the network routers and it allows the
system to efficiently use the network bandwidth. In both the aforementioned
examples the control system is composed by sensors, a set of decision pro-
cedures, and actuators. [12]| presents two protocols for QoS adaptation which
allow to recover from QoS violations by changing the distribution of QoS levels
assigned to the network components in distributed multimedia applications.

Some works related to hardware self-adaptation have also been proposed. In |7]
a self-adaptive hardware architecture is presented; this architecture provides
self-configuration, self-repair and/or fault tolerance capabilities by means of
self-placement and self-routing. In [5] a self-adaptive embedded processor is
described. This processor is able to deploy different special instructions at
run-time; the decision on which special instructions to deploy and when, is
based on their monitored usage. A compile-time analysis of the applications
is performed to reduce run-time overhead: the information extracted from
this analysis is used to forecast the kind of instructions that will be used by
the applications in the immediate future. Thus, self-adaptation can happen
without introducing delays in the computation.

In our work we propose a model of a system that supports both hardware
and software self-adaptivity. None of the previous works describes a compre-
hensive approach to self-adaptivity considering both self-adaptive hardware
and software. Our model applies to a stand-alone system with both adaptable
hardware and software. Such a system can be a component of a distributed sys-
tem. However we don’t address management of self-adaptivity for distributed
systems. The mechanisms for self-adaptivity that we describe both for hard-
ware and for software are to be classified as architecture-based [20] [9] [15]
[18].

The approaches described in |7] and in [5] for hardware can be easily adopted
in our hardware layer. Though to obtain the best possible performances, these
approaches should be modified to include the recommendation system.



2.2 Separation of concerns

Separation of concerns between the regular system functionality and the adap-
tation processes is about putting different concerns into different components
that will address them independently; this approach, even if not essential for
self-adaptivity, is very important as it offers benefits in terms of generality,
level of abstraction, integrated approach, and scalability. In [17] a vision of
architecture-based self-adaptation is provided and a reference software archi-
tecture is proposed.

In [15] another architecture for software self-adaptivity is presented; one of its
main goals is again separation of concerns. Thus, a ground-level that includes
baseline processing and a supervisory-level that is responsible for adaptation
and reconfiguration are considered. The former provides components that are
highly optimized for specific situations; the latter select the most optimal
components for the different situations. The adoption of the supervisory-level
enables the system to provide flexibility and robustness. [21] implements a QoS
management framework in a distributed system where adaptation strategies
are separated from the core functionality by means of aspect languages and
an encapsulation model for packaging adaptive behaviors.

One of the key concepts used in our paper is separation of concerns; this
concept is adopted in the two works described above as well as in [9] and [23].

2.3  Adaptation management

Most of the approaches proposed in the literature use a centralized controller
for self-adaptation. For example, [18] proposes a centralized controller based on
constraint-guided design space exploration. The proposed approach is to use
models to represent the different points in the design space of the application.
The design space is composed of different software component alternatives.
The basic idea is to create multiple-aspect models of the design points at
design time. These models, along with system constraints, are then embedded
into the run-time system and used for self-adaptivity decisions. Each constraint
can be associated with one or more values that are continuously measured at
run-time. Whenever one of these values crosses the threshold associated with
it, the controller is triggered and the constrained design space exploration
starts.

A different approach is to use decentralized controllers instead of a centralized
one. This idea is mentioned in [22]; its main goal is to propose a software
architecture that enables applications to be self-tuning and persistent. The
work relies on strictly defined and controlled layering of policies and mech-



anisms, and on the complete control of all layers. Layer coordination is also
utilized to obtain a stable behavior of the software. [21| uses a mix of central-
ized and localized QoS management in a distributed real-time system setting.
Central control drives the QoS management via policies throughout the net-
work whereas local control is guided by the contract attached to the network
component.

In our work self-adaptivity is managed by means of a decentralized mecha-
nism to simplify the local controllers. However this requires some coordination
among the local controllers as also explained in [22]: we solved this problem
through the recommendation system. In our approach the MCA paradigm
similar to the one proposed in [9, Figure 1| is adopted at all levels for manag-
ing self-adaptation. This scheme is based on the feedback coming from probes
as explained also in [2]. In our work we extended this mechanism to the control
of the whole hardware/software system.

2.4 Adaptation Requirements Specification

Adaptation requirements have been specified differently in various works. In
[18] they are specified as constraints by Object Constraint Language (OCL); in
[21] they are expressed as policies via rule-based contracts. In [13] adaptation
requirements are defined as constraints in a custom requirement description
language (RDL). In [6] the authors introduce a method to specify adaptation
requirements by means of goals. Goals are represented by using a graphical
language named KAOS; by using this language a full goal-oriented specifica-
tion of an adaptive system can be drawn.

In our work we propose a goal specification interface based on XML. Goals
are specified as human readable requirements for the applications.

3 Model of Self Adaptive Systems

The design of self-adaptive systems is challenging due to the great number
of variables to consider. For this reason, separation of concerns as well as an
architecture-based approach have been adopted in several scientific publica-
tions. In this section we describe a model that is based on the same concepts
and that provides the capability of managing self-adaptive software coupled
with self-adaptive hardware, yet providing software portability. In the first
part of this section we provide an analysis of self-adaptivity requirements of
the different system components; we then present our model and we show
how this model satisfies the requirements. The model has been developed to



be general, thus, no reference to any specific implementation is made.

3.1 Self-adaptation Design

At software level self-adaptivity depends on events related to the environment
(i.e., on events that are external to the system). Software can be self adaptive
without necessarily relying on specific support mechanisms provided by the
system (self-adaptation embedded in the source code). For example, if a net-
work congestion is detected by the software, a compression algorithm can be
activated on the data sent over the network; this self-adaptation mechanism
can be entirely embedded in the software application. When software is con-
sidered, a number of possibilities for self-adaptation are available: run-time
and dynamic change of the application goals (i.e., the application changes
its high-level requirements for the system), adaptation based on selection of
different behaviors (i.e., a different implementation of the same algorithm is
selected), and intra-algorithm adaptation (i.e., some of the parameters of the
considered algorithm implementations are changed at run-time). All of these
self-adaptation mechanisms could be directly implemented in the software ap-
plication, even though the first method requires support from the system to be
effective. As shown in [9] an enabling technology for efficient adaptation is a
component-based approach. The duty of managing adaptation (i.e., choosing
one component among the others) is delegated to specialized software compo-
nents, thus providing separation of concerns. For this purpose we require:

e an explicit specification of application goals along with a mechanism to
change goals at run-time;

e the ability to modify the application components and their interconnections
to achieve the expected results;

e the software components to support different working configurations (inter-
changeable at run-time).

At hardware level there are two possible kinds of self-adaptation: structural
(i.e., change in the functional units or in the interconnections) and on param-
eters (i.e., hardware parameters — such as frequency — are changed run-time).
Also in this case a component-based approach can be used to ease structural
self-adaptation. Self-adaptive hardware can either manage adaptations inter-
nally or it can delegate (partly or entirely) this management to the software
layer. For providing internal self-adaptation, the hardware needs to be able
to change its configuration in a transparent way with respect to the software
layer. Whenever software support is required for self-adaptivity, the hardware
must notify to the software its reconfiguration capabilities. In both cases, the
hardware may provide some information on the application execution and
on the parameters that can be monitored and/or directly controlled by the



software layer.

As discussed in Section 2.1, different kinds of hardware architectures may
be utilized in a self-adaptive system. Although software developers should be
enabled to write applications without necessarily knowing the structure of the
underlying hardware and the mechanisms used for self-adaptation. In fact, the
management of all of these details would make the job of the programmer too
complex, it would break portability of applications, and it would remove any
convenience in using self-adaptive systems.

3.2 The Model

The model that we propose here has been conceived taking into account the
points discussed in the previous section; it was designed with the following
assumptions in mind:

e adaptation is performed by algorithm selection: selection of the best algo-
rithm implementation in a fixed set of available implementations, based on
the observation of the operating environment [20];

e focusing on the adaptation management and assuming that the evolution
management (topology and components architecture) is performed somehow
at middleware layer;

e complete separation of goals among different levels (i.e., a goal that is man-
aged at software level is not managed also at hardware level).

The last point is a restrictive condition that may be relaxed in future versions
of the model.

The model is composed by a hardware and a software level, plus an interme-
diate level named Run Time Environment (RTE). The main purpose of RTE
is to provide a standard interface between software and hardware. These func-
tionalities are similar to the ones provided by other run-time environments
such as, for example, the Java Runtime Environment [11]. The high-level ar-
chitecture of the proposed model is shown in Figure 1. The RTE and the soft-
ware level are grouped together as a macro-level (software macro-level). To
implement the middleware functionality for a self-adaptive system, the RTE
must be able to handle both hardware and software self-adaptivity. Thus, the
RTE must provide an adaptation management framework to monitor, model,
control, and adapt each software application. Furthermore, it must manage
the available hardware resources by means of proper hardware interfaces.

Software macro-level and hardware level will monitor the applications being
executed and self-adapt to reach their goals (whenever it is possible with the
available system resources). Each level will check the results provided by lower
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Fig. 1. Model of self-adaptive systems

levels along with their timing to check whether the required goals have been
met. By this mechanism each macro-level is the only responsible for its own
goals; goals propagate with a waterfall mechanism from the software level to
the hardware level. The software macro-level self-adapts by choosing differ-
ent implementations of the algorithms that are being executed or by changing
their parameters. The hardware level has the capability to self-adapt by chang-
ing both hardware parameters (e.g., the clock frequency) and the hardware
architecture to satisfy the goals imposed by either the software macro-level
or at design time (e.g., temperature thresholds). Decisions on reconfigurations
are anyway made locally at each level.

Figure 1 also provides a general view of the RTE architecture. The interfaces
with hardware and with software embody two of the most important capa-
bilities of the RTE: the propagation of goals from the applications down to
the hardware layer (if required) and the management of adaptivity. In fact,
to accomplish the main adaptation features, RTE must at least provide the
following capabilities: interface with hardware and software, resource man-
agement, and adaptation management. A description of the RTE blocks that
provide these capabilities is presented in the following sections.

10



3.2.1 RTE Interfaces

The RTE-SW and the RTE-HW are the modules that provide the interfaces
of the RTE with the software and with the hardware, respectively. By replac-
ing the RTE-HW component, the RTE will be able to deal with different kinds
of hardware by always providing the same interface to software applications.
The RTE-SW provides a standard interface for self-adaptive applications. The
RTE-SW interface differs from the interfaces currently provided in normal op-
erating systems in that it also provides a proper way to specify application
goals and alternative implementations of the algorithms used within the ap-
plication. In the interface a number of standard goals that can be provided by
the applications, currently throughput and latency, is specified. Other possi-
ble goals must be translated into these ones by application programmers. RTE
may also enable the software application to directly monitor some system pa-
rameters. A list of the available parameters is published in the interface. Even
though the monitoring of the goals is performed by the RTE, the application
is not allowed to perform any direct reconfiguration of the system.

The RTE-HW interface is used to manage the execution of operations by the
hardware and to collect the results of these executions. This interface may
also allow the RTE to send adaptation recommendations to the hardware.
The capability of managing hardware functional reconfiguration may also be
provided. This is useful for hardware modules that are not able to self-manage.

3.2.2 RTE Resource Manager

The Resource Manager is a fundamental component of the RTE; it is respon-
sible for discovering the available hardware resources, increasing/decreasing
parallelism (given that enough resources are available), and changing the dis-
tribution of tasks over the available resources.

3.2.3 RTE Adaptation Manager and Self-Adaptation

The two levels contained in the software macro-level of Figure 1 (software and
RTE), strictly cooperate to provide self-adaptation. As mentioned before, the
software level provides the RTE with a list of alternative software implemen-
tations of parts of the applications. The RTE monitors different parameters
and tries to satisfy the goals by selecting a proper software implementation
or by reconfiguring the underlying hardware, whenever functional reconfigu-
ration of the hardware is available to the RTE. The Adaptation Manager is
the component that actually manages such an adaptation mechanism.

The Adaptation Manager receives as input the applications to be executed
along with their goals from the software layer and it uses a MCA paradigm

11
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Fig. 2. Adaptation scheme at software macro-level.

to handle the software self-adaptation. The Adapter connects the monitored
variables space with the adaptation space. The monitored variables space is
generated from the goals that, in turn, are translated into a combination of
monitorable variables. The adaptation space is obtained from the description
of the possible alternative algorithm implementations provided by the appli-
cations. The MCA loop uses the monitored variables space to observe the
operating environment and to awake the controller for an adaptation transi-
tion. An adaptation transition is performed every time a goal is not reached.
Therefore, we can assert that once a goal is specified using the available mon-
itored variables, such a goal is used to build arcs in the adaptation graph,
where each node represents a specific component implementation. The MCA
feedback loop is the goal-driven mechanism to move in the adaptation graph.

Figure 2 shows the MCA self-adaptation scheme proposed for the software
macro-level. Each application is monitored by a specific monitor; for each
application a controller receives information from its own monitor and provides
proper control signals to the adapter. The latter reconfigures the application
in a proper way when required. A RTE-level MCA scheme is also adopted to
check that system goals, and not only the application ones, are reached. This
system monitor checks the system behavior and sends proper information to
the system recommendation unit that, in turn, sends proper reconfiguration
recommendations to the hardware level.

The RTE itself is also self-adaptive; in fact, even the controller can be changed
depending on the system conditions (e.g., different algorithms can be used to
manage self-adaptation depending on the number of running applications).

As mentioned before, self-adaptivity is locally managed at each macro-level.
Unfortunately, a completely decentralized management of self-adaptation may

12



lead to a non optimal utilization of the system resources and to the inability
to satisfy goals even when system resources would be sufficient. To solve this
problem a coordination mechanism between the software and the hardware
self-adaptivity controllers has been introduced. This mechanism is called the
recommendation system. Whenever the RTE-level global monitor senses that a
global goal is not reached and cannot be reached by means of software adapta-
tions, it notifies the hardware (i.e., it sends a recommendation). The hardware
receives this notification and may use it for future self-adaptations, or not. A
feedback on the recommendation may be given to the RTE. The recommenda-
tion system activates some state transitions that may not normally be used by
the hardware controller. This helps the system to move toward other possible
design points which may be the optimal ones.

3.3  Goal Management Interface Proposal

In this section we propose a possible interface for specifying application goals
and alternative algorithm implementations. This is a very important part of
the system as all the self-adaptation process depends on goals. Goals are de-
fined by means of a XML file, such as the one shown in Figure 3. The goal
name identifies the kind of goal to be considered; as mentioned before, it can
be throughput or latency. The weight field is used to assign a proper priority
to the different goals and it is in the 0 — 1 range; the sum of all the weights
for the different goals must be 1 as shown in Equation 1. Threshold condition
can be gt or [t that stand for greater than and less than, respectively. Thresh-
old is used to specify the threshold for the given goal. There is an alternate
syntax, specified by the keyword MINMAX, for specifying more generic goals
requirements, such as "maximize throughput". In the MINMAX the type field
can assume the values min or maz to specify if a goal has to be minimized
or maximized, respectively. Thresholds are expressed in bit/s in throughput
goals and in ns in latency goals.

In the RTE, overall goal achievement (G) is calculated as a weighted sum of
all application goal achievements by using the following formula:

G:Zwixgi, where Zwizl, w; >0 (1)

=1 =1

n is the number of application goals, g; signifies the degree of achievement
for the goal i, and w; is the weight of the goal . G is always greater than 0
and lower than 1. The closer G is to 1, the closer the application is to satisfy
its goals. G = 1 means that all the goals are satisfied. The g; values can be
determined in two different ways, depending on the kind of goal considered.
T of the corresponding monitored variable

For a goal g; a threshold value (m;]
is provided by the application through the goal management interface. At any

13



<GOAL name="goal_name", weight="goal_weight">
<THRESHOLD condition ="gt | 1t" threshold="value"/> | <MINMAX type="min | max"/>
</GOAL>

Fig. 3. XML for the specification of application goals.

<ALGORITHM id="app_id">
<IMPLEMENTATION id="impl_id">
<PARAMETER name="param_name'">

<RANGE type="incremental | set" range="[start, end, stepl | [v_1, ..., v_nl"/>
</PARAMETER>
<GOAL_EFFECT position="goal_position"/>
</IMPLEMENTATION>
</ALGORITHM>

Fig. 4. XML for the specification of alternative algorithm implementations.

instant, the actual monitored value (m;) is obtained through the monitoring
capabilities of the RTE. The achievement level of the goal can then be calcu-
lated using these two values. If the threshold represents a lower bound, the
following formula is used to compute g;:

T T
m;/m;, m; < m,;

gi = (2)
1, m; >m}

Whenever the threshold, instead, provides an upper bound, the formula for g;
becomes:
ml /m;, m; >m?!

9i = (3)
1, m; <m!

As mentioned before, some goals may be of the kind “maximize/minimize the
monitored value m;” (MINMAX goals); in this case, g; = m;/MAX(m;) for
goals that must be maximized and g; = MIN(m;)/m; for goals that must be
minimized where M IN and M AX functions give the minimum and maximum
values of the monitored variable ever encountered during the lifetime of the
application.

Different algorithm implementations are specified by means of the interface
defined in Figure 4. In this XML file we can define different alternative imple-
mentations, their parameters, and a range of values for the parameters. Im-
plementations are sorted in the file according to increasing values of the cost
function with respect to a reference architecture. This sorting can be done by
using a technique similar to the one used in [18] in which a performance model
of different design points is created at design time. Unfortunately, in our case
we cannot know in advance which hardware architecture will be used. Thus,
the sorting is done on a reference architecture and will be updated by the RTE
at run-time to reflect the real performance of the different algorithm imple-
mentations on the considered system. In the figure, id in the ALGORITHM

14



<GOAL name="throughput" weight="0.8">
<THRESHOLD condition="gt"
threshold="1024"/>
</GOAL>

<GOAL name="latency" weight="0.2">
<MINMAX type="min"/>
</GOAL>

(a)

<ALGORITHM id="mpeg4_encoding">
<IMPLEMENTATION id="1">
<PARAMETER name="quality">
<RANGE type="incremental"
range="[1, 100, 1]"/>
</PARAMETER>
<GOAL_EFFECT position="2"/>
</IMPLEMENTATION>

<IMPLEMENTATION id="2">

<PARAMETER name="quality">

<RANGE type="set"

range="[10, 50, 75, 90, 100]"/>
</PARAMETER>
<GOAL_EFFECT position="1" />
</IMPLEMENTATION>
</ALGORITHM>
(b)

Fig. 5. Example of application specification. Specification of application goals in (a)
and alternative implementations of an algorithm in (b)

tag defines the identifier of the algorithm; ¢d in the IMPLEMENTATION tag
defines the identifier of the implementation considered. The PARAMETER
tag is used to define the parameters of the specific implementation; each pa-
rameter will be named through the name attribute. The RANGE tag allows
the programmer to specify a range for the considered parameter; type defines
the type of range considered: it can be either incremental (i.e., a range is
defined) or set (i.e., a list of values is provided). Whenever the range type
is incremental, the range must be provided as [start, end, step|; in the other
case, a list of values ([v1, vg, ..., v,]) must be given. GOAL EFFECT provides
the sorting with respect to the goal function to be maximized; this sorting is
provided through the position parameter.

Figure 5 shows an example of application goal specification and of alterna-
tive algorithm implementation specification; regarding the goals, a minimum
throughput of 1kbit/s is specified. This is the most important requirement
with weight 0.8. The second goal is specified on latency, that is required to be
minimized. From the implementation alternatives stand point, two alternative
implementations for the MPEG4 encoding algorithm are specified; the second
is the one exhibiting best performance on the reference system with respect
to the mix of goals considered. Though, the first implementation provides the
ability to specify different qualities for the image, ranging from 1 to 100% in in-
crements of 1; the second implementation only allows for five different quality
values (10%, 50%, 75%, 90%, 100%) to be utilized. Thus, the adaptation space
is defined by 105 points, corresponding to the different configurations given
by any algorithm implementation and parameter combination. The variable
space is given only by throughput and latency.
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3.4 Discussion on the Model

With our model, the general problem of designing self-adaptive systems has
been partitioned into several quasi-independent tasks such as creating adapt-
able systems, creating monitorable systems, and managing adaptation to meet
goals. Furthermore, each of these tasks are simplified by separating the system
into three levels such as software, run-time environment and hardware. The
focus in this paper has been more on the management of adaptation given
that run-time environment and hardware are equipped with adaptation and
monitoring capabilities. On such a model, management of self-adaptation re-
duces to specification of goals, distribution of goals onto RTE and HW levels,
and designing controllers for these levels. With such a decentralized controller
approach, the control algorithms at each level are expected to be simpler
as they would be responsible for achieving smaller number of possibly con-
flicting goals due to their distribution among different levels. Unfortunately,
this mechanism may introduce convergence problems; furthermore, just sub-
optimal solutions can be achieved by using this scheme. To avoid both of these
problems, we introduced the mechanism of recommendations. This mechanism
provides coordination among the controllers at different levels by also preserv-
ing the advantages of local self-adaptivity. In the most general sense, it can be
thought of as a mechanism to redistribute the goals among levels at run-time.

A number of simulations has been performed to help understand better the
advantages and disadvantages of our approach. The results of these simulations
are presented and discussed in Section 4

4 Model Simulation

The model presented in Section 3 has been described in SystemC and sim-
ulated. The SystemC language [19] was selected to describe our model as it
easily allows to co-simulate concurrently running HW/SW components as the
ones we are proposing in our model. The main purpose of our simulations is
to show that the proposed model for self-adaptation works. Furthermore, the
simulations provide a better view on the model properties.

In the SystemC model we analyzed an example in which we imposed two
goals on the system: the power consumption should be less than a threshold
m% and the throughput should be greater than a threshold m?.,. Figure 6
shows the simulation model that incorporates the MCA paradigm. Our focus
in this simulation is to analyze the coordination between the controllers at
different levels. Therefore we combined the adaptor and the monitor modules
with the system module. The adaptable parameters are the clock frequency
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Fig. 7. Two example control algorithms with their RTE and HW level controllers

and the implementation of the algorithm that is being run by the system.
The hardware supports switching between two frequencies (fow and frigh).
Adaptation space for the RTE is given by two different implementations of
the application (Impl; and I'mpls). The parameters that can be monitored
are power dissipation (mp) and the throughput (mgy) of the system. RTE
controller and HW controller have been assigned to meet the throughput and
power goals, respectively. It is well-known that running the hardware at a
higher frequency increases power consumption. Moreover it is given that Impl,
yields higher throughput than Impl; on a reference architecture. The use of
self-adaptivity eases the achievement of the desired performance in complex
systems in which some of the system parameters cannot be decided at design
time. However, for simulation purposes, the system behavior has been set
to produce values for monitored parameters in accordance with the given
adaptation parameters. Moreover the controllers have been considered to be
activated in defined periods.

As the first simulation, the model shown in Figure 6 has been used excluding
the recommendation unit (shown with dashes). The controller used is Con-
troller 1 consisting of the RTE controller and the HW controller as shown in
Figure 7.1a and 7.1b. The adaptation behavior obtained by means of Con-
troller 1 is given in Figure 8 showing the change of throughput and power
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Fig. 8. Simulation results with Controller 1 given in Figure 7.
(Tsystem = 1timeunit, TRTEController = 30timeunits, Trw Controller = 20timeunits)

values of the system in relation to the adaptation decisions taken by the con-
trollers. The adaptation is completed at time 60 with a success by reaching
high enough throughput and low enough power consumption. This shows that
it is possible to create decentralized controllers that would reach the goals for
all levels. However, designing such controllers is not intuitive: for example, in
the controller shown in Figure 7.1b a state change from low to high frequency
is performed even if the power goal is achieved in the low frequency state.
Moreover the selection of the periods of the controllers may be tricky. Taking
the period of the RTE controller as 40 instead of 30 time units results in a
live-lock situation in which both controllers decide to switch states at the same
time continuously while goals never get reached and adaptation never stops.

A more intuitive and simple way of designing controllers is to adopt a greedy
approach. Controller 2 as shown in Figure 7.2a and 7.2b is such a controller
where the state is preserved if the goals assigned to the controller are met. In
a real-life system, controllers like these need to be reset to their initial state
when goals or algorithms to be executed change. However, this controller set
does not allow the system to satisfy the throughput goal (as shown in Figure
9, w/o recommendation) even if the necessary resources are available.

As a next step, the effect of the recommendation unit is observed. The recom-
mendation unit is used to connect the controllers as shown in Figure 6. RTE
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controller signals the activation of the recommendation unit. In this example,
the only possible recommendation to the HW controller is a signal that means
RTE controller wasn’t able to meet its goals and that HW controller has to
do something about it. Figure 9 shows also the adaptation behavior obtained
with Controller 2 and the recommendation unit. At time 60, we observe the
intervention of the recommendation unit seeing the change of the operating
frequency from fjo, to fhrign resulting in meeting of the goals at both levels.

As observed in the results above, different controllers at different levels give
different results in terms of convergence of system self-adaptivity. The lesson
learned is that either some restrictions are applied on local controllers (e.g.,
different reconfiguration periods), or a coordination mechanism (the recom-
mendation system) is utilized.

5 Conclusions and Future Work

In this paper we have proposed a model for self-adaptive systems that incor-
porates many of the models proposed in the literature. A goal management
methodology and goal specification interface, along with a decentralized and
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coordinated control mechanism, have also been proposed.

The model has been discussed — also with the help of a system state simulation
— and its critical points have been put into light. The adoption of a decen-
tralized control system for self-adaptivity provides simplified management by
means of separation of concerns. Unfortunately, this decentralized mechanism
also introduces some complications due to the need for coordination among
the different controllers. This is required to guarantee convergence on the de-
cisions taken by the controllers. Otherwise some restrictions on them should
be applied to guarantee at least a sub optimal management of self-adaptivity.
Globally, the decentralized control system wins over the centralized one, not
only for simplicity reasons, but also because it provides an easier interchange-
ability of the hardware layer and better scalability.

As future work and model enhancements several different self-adaptivity con-
trol algorithms and parameters will be analyzed and tested. Moreover different
schemes to partition the goals onto different levels will be explored and their
effects will be observed. Finally, a system for checking the fulfillment of appli-
cation goals in a specific system will be studied and proposed.
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