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hAbstra
tSelf-adaptivity is the 
apability of a system to adapt itself dynami
ally to a
hieveits goals. Self-adaptive systems will be widely used in the future both to e�
ientlyuse system resour
es and to ease the management of 
omplex systems. The frame-works for self-adaptivity developed so far usually 
on
entrate either on self-adaptivesoftware or on self-adaptive hardware, but not both.In this paper we propose a model of self-adaptive systems and we des
ribe howto manage self-adaptivity at all levels (both hardware and software) by means of ade
entralized 
ontrol algorithm. The key advantage of de
entralized 
ontrol is in thesimpli
ity of the lo
al 
ontrollers. Simulation results are provided to show the main
hara
teristi
s of the model and to dis
uss it.Key words: self-adaptivity, re
on�gurable, autonomi
, goal, ar
hite
ture, model,appli
ation, hardware, software, run-time environment
1 Introdu
tionSelf-adaptivity is the 
apability of a system to adapt itself dynami
ally toa
hieve its goals. Goals are spe
i�ed by programmers or by users and de�neappli
ation requirements at high-level (i.e., as human readable requirements,su
h as, for example, throughput). By de�ning requirements self adaptive 
om-putational systems have the ability to adapt themselves to mutating internaland external 
onditions [20℄ without requesting any intervention of the user.
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Self-adaptation 
apabilities are used to implement autonomi
 and life-inspiredsystems: the in
reasing 
omplexity of 
omponents and the di�
ulties of theirintegration are pushing the designers toward self-managing systems. Thesesystems will have the ability to self-adapt and self-
on�gure to provide theperforman
e and the quality required [16℄ [14℄. Self-adaptive devi
es 
an beutilized in pervasive systems to 
ope with mutating environmental 
onditions.For example, a portable devi
e may be frequently moved from an o�
e en-vironment (where power and network plugs are available) to an external en-vironment (where the devi
e 
an only be battery operated and the networkmay be available in di�erent wired or wireless forms). In this 
ase the be-havior of di�erent hardware and/or software 
omponents of the system needsto be adapted to the new 
onditions (e.g., to redu
e power 
onsumption).Furthermore, di�erent fun
tionality may be proposed to the user in the newenvironment.Self-adaptation 
an be supported by the software (in the appli
ations, in theoperating system, or both) or by the hardware. In a system both hardwareand software 
omponents may be self-adaptive and ea
h part may or maynot have the knowledge of the possible self-adaptivity of other parts. Forexample, spe
i�
 fun
tions 
an be mapped on the hardware at run-time tooptimize the exe
ution of 
ertain appli
ations. The management of hardwareor software self-adaptivity is a 
omplex task as di�erent 
on�i
ting goals mayneed to be 
onsidered. Jointly managing hardware and software self-adaptationis of 
ourse even more 
omplex. Furthermore, a uni�ed self-adaptation 
on-troller, would impose a 
lose 
ooperation between hardware and software.Thus, it would be di�
ult to provide portable self-adaptive appli
ations. Aself-adaptive system lives in an environment whi
h 
an be de�ned as the 
om-plementary set of the self-adaptive system (i.e., all the things surroundingthe system). Self-adaptation 
an be triggered by di�erent events, like 
hangesin the environment, 
hanges in the appli
ations to be exe
uted, or 
hangesin the system operational 
onditions (e.g., a battery operated system dete
tsa 
hange in the battery status, or a 
omponent that be
omes faulty). Self-adaptivity not only provides fun
tional and operational bene�ts, but it alsoallows for self-healing. In fa
t, a faulty hardware or software 
omponent willbe automati
ally repla
ed (if repla
ements are available) to keep satisfying theappli
ation goals.This paper provides a 
omprehensive approa
h to self-adaptivity management.The target of this a approa
h is the model of self-adaptive system des
ribedin Se
tion 3. This model, as shown in Se
tion 2, is general enough to in
ludemany of the self-adaptive systems already dis
ussed in the literature and to
onsider a 
omprehensive approa
h to self-adaptivity both in hardware andin software 
omponents. The model implies a subdivision of the self-adaptivesystem in di�erent ma
ro-layers named software and hardware. The softwarema
ro-level is further divided into two levels: the former is for software appli-2




ations; the latter is for providing an uniform interfa
e between hardware andsoftware appli
ations. The framework aims at providing a 
ontrol me
hanismthat is both simple and e�
ient. The simpli
ity is rea
hed by using separationof 
on
erns and de
entralization of 
ontrol. The e�
ien
y is rea
hed by adopt-ing a 
oordination me
hanism, 
alled re
ommendation system, among the 
on-trollers. The paradigm used for self-adaptation management at all levels is themonitor-
ontroller-adapter (MCA) one. In this paradigm ea
h 
omponent isendorsed a di�erent role: the �rst one monitors the parameters of interest, these
ond one de
ides on possible self-adaptations, and the third one enfor
esthem. Some simulations are presented in the paper to show the properties ofthe re
ommendation system and to provide a ground for dis
ussing the model.The remaining part of the paper is organized as follows: Se
tion 2 gives anoverview of related resear
h about self-adaptivity in hardware and in software;Se
tion 3 presents our model; in Se
tion 4 the results of model simulations areshown and dis
ussed.2 Related WorkLooking at previous works, it is possible to see some similarities and di�er-en
es. As the most prevalent te
hnique for self-adaptation, we see the use ofthe monitor-
ontrol-adapter paradigm. In an e�ort to 
lassify the existing so-lutions, we identify four main design de
isions: Adaptation 
overage is de�nedby the parts of the system a�e
ted by adaptations. Majorly it may 
onsistof hardware, software, part of a distributed system (through adaptive middle-ware) or any 
ombination of them. Separation of 
on
erns is a design prin
iplethat de
ouples the fun
tionality of the system from the implementation of itsadaptation. Adaptation management is the de
ision making pro
ess on theevolution of the system. Adaptation requirements spe
i�
ation is the form ofdes
ribing the non-fun
tional requirements of the system. In the remainingpart of this se
tion we provide an overview of publi
ations related to self-adaptivity, 
lassi�ed a

ording to their most prominent 
hara
teristi
s in theview of these 
ategories.2.1 Adaptation 
overageA number of works addresses self-adaptivity in software; the simplest ap-proa
h adopted is to manage adaptation in the appli
ation 
ode. Althoughthis approa
h enables the development of ad-ho
 solutions for spe
i�
 adap-tation problems, it is 
learly not �exible enough to support a wide range ofadaptations. The use of an ar
hite
ture-based approa
h eases self-adaptivity:3



the system is viewed as a 
omposition of 
on
urrent 
omponents inter
on-ne
ted by 
onne
tors. A 
omprehensive adaptation methodology is presentedin [20℄. The authors propose an evolution and adaptation management in-frastru
ture. The evolution management pro
ess adapts the ar
hite
ture andthe topology of the 
omponents and of the system; the adaptation manage-ment pro
ess gathers information from the operating environment, evaluatesthe observations with respe
t to the system requirements, plans and deploysadaptation 
hanges. Moreover the need of 
omposable 
omponents is under-lined. Another work des
ribing a 
omponent-based ar
hite
tural approa
h ispresented in [9℄. The authors propose a framework that is both reusable, to
ope with a large set of systems, and that supports me
hanisms to spe
ializethe infrastru
ture for spe
i�
 
ases. To a
hieve su
h obje
tives, the frameworkis divided into two logi
al parts: an adaptation infrastru
ture and a systemspe
i�
 adaptation model. The former provides 
ommon fun
tionality that isreusable a
ross di�erent self-adaptive systems; the latter is spe
i�
 to a 
ertainsystem and it is used to tailor the entire framework for it. In [2℄ an ar
hite
turedes
ription language named Ar
hWare is modi�ed to support self-adaptation.Feedba
k obtained by means of software probes is used to 
ontrol softwareself-adaptations.A formal approa
h to the design of adaptive software is introdu
ed in [23℄where an ar
hite
ture-based approa
h is not 
onsidered. In parti
ular, theadaptation is 
on
eived as a state transition from a sour
e program to a targetprogram inside of a suitable set of adaptation states. Ea
h adaptive software isrepresented by a state ma
hine, where ea
h state exhibits a di�erent behaviorand operates in a 
ertain domain. To guarantee system integrity and 
onsis-ten
y, lo
al and global properties (requirements, 
onstraints, and invariants)that should be satis�ed by an adaptive program for every state 
hange areintrodu
ed.Self-adaptation has been addressed in distributed systems for the managementof quality of servi
e (QoS) mostly through adaptive middleware me
hanismsand 
ustom adaptation management proto
ols. A 
ontrol theory approa
h toQoS is proposed in [3℄, [4℄. In the �rst paper, the authors introdu
e a pas-sive adaptation task me
hanism, lo
ated in the middleware level to supportappli
ation-spe
i�
 adaptation. Basi
ally, passive adaptations 
an be viewedas transformations of the data input stream in
oming into a task (e.g. a soft-ware 
omponent) to �t a requires QoS. The middleware performs adaptationbetween appli
ations and the transport layer based on 
ertain QoS metri
s.In the se
ond paper, the same authors extend and improve su
h a me
hanismto balan
e and support both appli
ation-spe
i�
 adaptations and system-widerequirements, su
h as stability and fairness. In [10℄ a mirror-based re�e
tionapproa
h for self-adaptivity is proposed. By de�nition, a re�e
tive system isable to perform 
omputations about itself; moreover, it provides introspe
tionand 
ontrol through a re�e
tive interfa
e. By applying this re�e
tive me
ha-4



nism to software 
omponents, the middleware 
an perform self-adaptation byusing the re�e
tive interfa
e of ea
h 
omponent. Adaptation behavior, ar
hi-te
ture and implementation of a 
omponent 
an be spe
ialized to �t a spe
i�

ontext by annotating ea
h implementation with quality of servi
e metri
s.Therefore, the middleware uses su
h quality of servi
e metri
s to trigger theadaptation of 
omponents.In [1℄ an approa
h for managing quality of servi
e grid systems is presented:system resour
es are managed in an adaptive way both to satisfy the quality ofservi
e requirements and to use the resour
es e�
iently. Thus, self-adaptivityis in the pro
ess management software in
luded in the operating system ofea
h node. In [8℄ a similar approa
h is used to provide network quality of ser-vi
e. The self-adaptivity is in
luded in the network routers and it allows thesystem to e�
iently use the network bandwidth. In both the aforementionedexamples the 
ontrol system is 
omposed by sensors, a set of de
ision pro-
edures, and a
tuators. [12℄ presents two proto
ols for QoS adaptation whi
hallow to re
over from QoS violations by 
hanging the distribution of QoS levelsassigned to the network 
omponents in distributed multimedia appli
ations.Some works related to hardware self-adaptation have also been proposed. In [7℄a self-adaptive hardware ar
hite
ture is presented; this ar
hite
ture providesself-
on�guration, self-repair and/or fault toleran
e 
apabilities by means ofself-pla
ement and self-routing. In [5℄ a self-adaptive embedded pro
essor isdes
ribed. This pro
essor is able to deploy di�erent spe
ial instru
tions atrun-time; the de
ision on whi
h spe
ial instru
tions to deploy and when, isbased on their monitored usage. A 
ompile-time analysis of the appli
ationsis performed to redu
e run-time overhead: the information extra
ted fromthis analysis is used to fore
ast the kind of instru
tions that will be used bythe appli
ations in the immediate future. Thus, self-adaptation 
an happenwithout introdu
ing delays in the 
omputation.In our work we propose a model of a system that supports both hardwareand software self-adaptivity. None of the previous works des
ribes a 
ompre-hensive approa
h to self-adaptivity 
onsidering both self-adaptive hardwareand software. Our model applies to a stand-alone system with both adaptablehardware and software. Su
h a system 
an be a 
omponent of a distributed sys-tem. However we don't address management of self-adaptivity for distributedsystems. The me
hanisms for self-adaptivity that we des
ribe both for hard-ware and for software are to be 
lassi�ed as ar
hite
ture-based [20℄ [9℄ [15℄[18℄.The approa
hes des
ribed in [7℄ and in [5℄ for hardware 
an be easily adoptedin our hardware layer. Though to obtain the best possible performan
es, theseapproa
hes should be modi�ed to in
lude the re
ommendation system.5



2.2 Separation of 
on
ernsSeparation of 
on
erns between the regular system fun
tionality and the adap-tation pro
esses is about putting di�erent 
on
erns into di�erent 
omponentsthat will address them independently; this approa
h, even if not essential forself-adaptivity, is very important as it o�ers bene�ts in terms of generality,level of abstra
tion, integrated approa
h, and s
alability. In [17℄ a vision ofar
hite
ture-based self-adaptation is provided and a referen
e software ar
hi-te
ture is proposed.In [15℄ another ar
hite
ture for software self-adaptivity is presented; one of itsmain goals is again separation of 
on
erns. Thus, a ground-level that in
ludesbaseline pro
essing and a supervisory-level that is responsible for adaptationand re
on�guration are 
onsidered. The former provides 
omponents that arehighly optimized for spe
i�
 situations; the latter sele
t the most optimal
omponents for the di�erent situations. The adoption of the supervisory-levelenables the system to provide �exibility and robustness. [21℄ implements a QoSmanagement framework in a distributed system where adaptation strategiesare separated from the 
ore fun
tionality by means of aspe
t languages andan en
apsulation model for pa
kaging adaptive behaviors.One of the key 
on
epts used in our paper is separation of 
on
erns; this
on
ept is adopted in the two works des
ribed above as well as in [9℄ and [23℄.2.3 Adaptation managementMost of the approa
hes proposed in the literature use a 
entralized 
ontrollerfor self-adaptation. For example, [18℄ proposes a 
entralized 
ontroller based on
onstraint-guided design spa
e exploration. The proposed approa
h is to usemodels to represent the di�erent points in the design spa
e of the appli
ation.The design spa
e is 
omposed of di�erent software 
omponent alternatives.The basi
 idea is to 
reate multiple-aspe
t models of the design points atdesign time. These models, along with system 
onstraints, are then embeddedinto the run-time system and used for self-adaptivity de
isions. Ea
h 
onstraint
an be asso
iated with one or more values that are 
ontinuously measured atrun-time. Whenever one of these values 
rosses the threshold asso
iated withit, the 
ontroller is triggered and the 
onstrained design spa
e explorationstarts.A di�erent approa
h is to use de
entralized 
ontrollers instead of a 
entralizedone. This idea is mentioned in [22℄; its main goal is to propose a softwarear
hite
ture that enables appli
ations to be self-tuning and persistent. Thework relies on stri
tly de�ned and 
ontrolled layering of poli
ies and me
h-6



anisms, and on the 
omplete 
ontrol of all layers. Layer 
oordination is alsoutilized to obtain a stable behavior of the software. [21℄ uses a mix of 
entral-ized and lo
alized QoS management in a distributed real-time system setting.Central 
ontrol drives the QoS management via poli
ies throughout the net-work whereas lo
al 
ontrol is guided by the 
ontra
t atta
hed to the network
omponent.In our work self-adaptivity is managed by means of a de
entralized me
ha-nism to simplify the lo
al 
ontrollers. However this requires some 
oordinationamong the lo
al 
ontrollers as also explained in [22℄: we solved this problemthrough the re
ommendation system. In our approa
h the MCA paradigmsimilar to the one proposed in [9, Figure 1℄ is adopted at all levels for manag-ing self-adaptation. This s
heme is based on the feedba
k 
oming from probesas explained also in [2℄. In our work we extended this me
hanism to the 
ontrolof the whole hardware/software system.2.4 Adaptation Requirements Spe
i�
ationAdaptation requirements have been spe
i�ed di�erently in various works. In[18℄ they are spe
i�ed as 
onstraints by Obje
t Constraint Language (OCL); in[21℄ they are expressed as poli
ies via rule-based 
ontra
ts. In [13℄ adaptationrequirements are de�ned as 
onstraints in a 
ustom requirement des
riptionlanguage (RDL). In [6℄ the authors introdu
e a method to spe
ify adaptationrequirements by means of goals. Goals are represented by using a graphi
allanguage named KAOS; by using this language a full goal-oriented spe
i�
a-tion of an adaptive system 
an be drawn.In our work we propose a goal spe
i�
ation interfa
e based on XML. Goalsare spe
i�ed as human readable requirements for the appli
ations.3 Model of Self Adaptive SystemsThe design of self-adaptive systems is 
hallenging due to the great numberof variables to 
onsider. For this reason, separation of 
on
erns as well as anar
hite
ture-based approa
h have been adopted in several s
ienti�
 publi
a-tions. In this se
tion we des
ribe a model that is based on the same 
on
eptsand that provides the 
apability of managing self-adaptive software 
oupledwith self-adaptive hardware, yet providing software portability. In the �rstpart of this se
tion we provide an analysis of self-adaptivity requirements ofthe di�erent system 
omponents; we then present our model and we showhow this model satis�es the requirements. The model has been developed to7



be general, thus, no referen
e to any spe
i�
 implementation is made.3.1 Self-adaptation DesignAt software level self-adaptivity depends on events related to the environment(i.e., on events that are external to the system). Software 
an be self adaptivewithout ne
essarily relying on spe
i�
 support me
hanisms provided by thesystem (self-adaptation embedded in the sour
e 
ode). For example, if a net-work 
ongestion is dete
ted by the software, a 
ompression algorithm 
an bea
tivated on the data sent over the network; this self-adaptation me
hanism
an be entirely embedded in the software appli
ation. When software is 
on-sidered, a number of possibilities for self-adaptation are available: run-timeand dynami
 
hange of the appli
ation goals (i.e., the appli
ation 
hangesits high-level requirements for the system), adaptation based on sele
tion ofdi�erent behaviors (i.e., a di�erent implementation of the same algorithm issele
ted), and intra-algorithm adaptation (i.e., some of the parameters of the
onsidered algorithm implementations are 
hanged at run-time). All of theseself-adaptation me
hanisms 
ould be dire
tly implemented in the software ap-pli
ation, even though the �rst method requires support from the system to bee�e
tive. As shown in [9℄ an enabling te
hnology for e�
ient adaptation is a
omponent-based approa
h. The duty of managing adaptation (i.e., 
hoosingone 
omponent among the others) is delegated to spe
ialized software 
ompo-nents, thus providing separation of 
on
erns. For this purpose we require:
• an expli
it spe
i�
ation of appli
ation goals along with a me
hanism to
hange goals at run-time;
• the ability to modify the appli
ation 
omponents and their inter
onne
tionsto a
hieve the expe
ted results;
• the software 
omponents to support di�erent working 
on�gurations (inter-
hangeable at run-time).At hardware level there are two possible kinds of self-adaptation: stru
tural(i.e., 
hange in the fun
tional units or in the inter
onne
tions) and on param-eters (i.e., hardware parameters � su
h as frequen
y � are 
hanged run-time).Also in this 
ase a 
omponent-based approa
h 
an be used to ease stru
turalself-adaptation. Self-adaptive hardware 
an either manage adaptations inter-nally or it 
an delegate (partly or entirely) this management to the softwarelayer. For providing internal self-adaptation, the hardware needs to be ableto 
hange its 
on�guration in a transparent way with respe
t to the softwarelayer. Whenever software support is required for self-adaptivity, the hardwaremust notify to the software its re
on�guration 
apabilities. In both 
ases, thehardware may provide some information on the appli
ation exe
ution andon the parameters that 
an be monitored and/or dire
tly 
ontrolled by the8



software layer.As dis
ussed in Se
tion 2.1, di�erent kinds of hardware ar
hite
tures maybe utilized in a self-adaptive system. Although software developers should beenabled to write appli
ations without ne
essarily knowing the stru
ture of theunderlying hardware and the me
hanisms used for self-adaptation. In fa
t, themanagement of all of these details would make the job of the programmer too
omplex, it would break portability of appli
ations, and it would remove any
onvenien
e in using self-adaptive systems.3.2 The ModelThe model that we propose here has been 
on
eived taking into a

ount thepoints dis
ussed in the previous se
tion; it was designed with the followingassumptions in mind:
• adaptation is performed by algorithm sele
tion: sele
tion of the best algo-rithm implementation in a �xed set of available implementations, based onthe observation of the operating environment [20℄;
• fo
using on the adaptation management and assuming that the evolutionmanagement (topology and 
omponents ar
hite
ture) is performed somehowat middleware layer;
• 
omplete separation of goals among di�erent levels (i.e., a goal that is man-aged at software level is not managed also at hardware level).The last point is a restri
tive 
ondition that may be relaxed in future versionsof the model.The model is 
omposed by a hardware and a software level, plus an interme-diate level named Run Time Environment (RTE). The main purpose of RTEis to provide a standard interfa
e between software and hardware. These fun
-tionalities are similar to the ones provided by other run-time environmentssu
h as, for example, the Java Runtime Environment [11℄. The high-level ar-
hite
ture of the proposed model is shown in Figure 1. The RTE and the soft-ware level are grouped together as a ma
ro-level (software ma
ro-level). Toimplement the middleware fun
tionality for a self-adaptive system, the RTEmust be able to handle both hardware and software self-adaptivity. Thus, theRTE must provide an adaptation management framework to monitor, model,
ontrol, and adapt ea
h software appli
ation. Furthermore, it must managethe available hardware resour
es by means of proper hardware interfa
es.Software ma
ro-level and hardware level will monitor the appli
ations beingexe
uted and self-adapt to rea
h their goals (whenever it is possible with theavailable system resour
es). Ea
h level will 
he
k the results provided by lower9



Fig. 1. Model of self-adaptive systems
levels along with their timing to 
he
k whether the required goals have beenmet. By this me
hanism ea
h ma
ro-level is the only responsible for its owngoals; goals propagate with a waterfall me
hanism from the software level tothe hardware level. The software ma
ro-level self-adapts by 
hoosing di�er-ent implementations of the algorithms that are being exe
uted or by 
hangingtheir parameters. The hardware level has the 
apability to self-adapt by 
hang-ing both hardware parameters (e.g., the 
lo
k frequen
y) and the hardwarear
hite
ture to satisfy the goals imposed by either the software ma
ro-levelor at design time (e.g., temperature thresholds). De
isions on re
on�gurationsare anyway made lo
ally at ea
h level.Figure 1 also provides a general view of the RTE ar
hite
ture. The interfa
eswith hardware and with software embody two of the most important 
apa-bilities of the RTE: the propagation of goals from the appli
ations down tothe hardware layer (if required) and the management of adaptivity. In fa
t,to a

omplish the main adaptation features, RTE must at least provide thefollowing 
apabilities: interfa
e with hardware and software, resour
e man-agement, and adaptation management. A des
ription of the RTE blo
ks thatprovide these 
apabilities is presented in the following se
tions.10



3.2.1 RTE Interfa
esThe RTE-SW and the RTE-HW are the modules that provide the interfa
esof the RTE with the software and with the hardware, respe
tively. By repla
-ing the RTE-HW 
omponent, the RTE will be able to deal with di�erent kindsof hardware by always providing the same interfa
e to software appli
ations.The RTE-SW provides a standard interfa
e for self-adaptive appli
ations. TheRTE-SW interfa
e di�ers from the interfa
es 
urrently provided in normal op-erating systems in that it also provides a proper way to spe
ify appli
ationgoals and alternative implementations of the algorithms used within the ap-pli
ation. In the interfa
e a number of standard goals that 
an be provided bythe appli
ations, 
urrently throughput and laten
y, is spe
i�ed. Other possi-ble goals must be translated into these ones by appli
ation programmers. RTEmay also enable the software appli
ation to dire
tly monitor some system pa-rameters. A list of the available parameters is published in the interfa
e. Eventhough the monitoring of the goals is performed by the RTE, the appli
ationis not allowed to perform any dire
t re
on�guration of the system.The RTE-HW interfa
e is used to manage the exe
ution of operations by thehardware and to 
olle
t the results of these exe
utions. This interfa
e mayalso allow the RTE to send adaptation re
ommendations to the hardware.The 
apability of managing hardware fun
tional re
on�guration may also beprovided. This is useful for hardware modules that are not able to self-manage.3.2.2 RTE Resour
e ManagerThe Resour
e Manager is a fundamental 
omponent of the RTE; it is respon-sible for dis
overing the available hardware resour
es, in
reasing/de
reasingparallelism (given that enough resour
es are available), and 
hanging the dis-tribution of tasks over the available resour
es.3.2.3 RTE Adaptation Manager and Self-AdaptationThe two levels 
ontained in the software ma
ro-level of Figure 1 (software andRTE), stri
tly 
ooperate to provide self-adaptation. As mentioned before, thesoftware level provides the RTE with a list of alternative software implemen-tations of parts of the appli
ations. The RTE monitors di�erent parametersand tries to satisfy the goals by sele
ting a proper software implementationor by re
on�guring the underlying hardware, whenever fun
tional re
on�gu-ration of the hardware is available to the RTE. The Adaptation Manager isthe 
omponent that a
tually manages su
h an adaptation me
hanism.The Adaptation Manager re
eives as input the appli
ations to be exe
utedalong with their goals from the software layer and it uses a MCA paradigm11



Adapter

Monitor

Controller

Monitored
parameters

RTE

Adapter

Monitor
App. 2

Monitored
parameters

Controller
Adapter

Monitor

Controller

App. 1

Monitored
parameters

Adapter

Monitor

Controller

App. n

Monitored
parameters

Adapter

Monitor

Controller

App. 3

Monitored
parameters

Monitor

Controller

Recommendations
for HW level

Recomm.

...

Fig. 2. Adaptation s
heme at software ma
ro-level.to handle the software self-adaptation. The Adapter 
onne
ts the monitoredvariables spa
e with the adaptation spa
e. The monitored variables spa
e isgenerated from the goals that, in turn, are translated into a 
ombination ofmonitorable variables. The adaptation spa
e is obtained from the des
riptionof the possible alternative algorithm implementations provided by the appli-
ations. The MCA loop uses the monitored variables spa
e to observe theoperating environment and to awake the 
ontroller for an adaptation transi-tion. An adaptation transition is performed every time a goal is not rea
hed.Therefore, we 
an assert that on
e a goal is spe
i�ed using the available mon-itored variables, su
h a goal is used to build ar
s in the adaptation graph,where ea
h node represents a spe
i�
 
omponent implementation. The MCAfeedba
k loop is the goal-driven me
hanism to move in the adaptation graph.Figure 2 shows the MCA self-adaptation s
heme proposed for the softwarema
ro-level. Ea
h appli
ation is monitored by a spe
i�
 monitor; for ea
happli
ation a 
ontroller re
eives information from its own monitor and providesproper 
ontrol signals to the adapter. The latter re
on�gures the appli
ationin a proper way when required. A RTE-level MCA s
heme is also adopted to
he
k that system goals, and not only the appli
ation ones, are rea
hed. Thissystem monitor 
he
ks the system behavior and sends proper information tothe system re
ommendation unit that, in turn, sends proper re
on�gurationre
ommendations to the hardware level.The RTE itself is also self-adaptive; in fa
t, even the 
ontroller 
an be 
hangeddepending on the system 
onditions (e.g., di�erent algorithms 
an be used tomanage self-adaptation depending on the number of running appli
ations).As mentioned before, self-adaptivity is lo
ally managed at ea
h ma
ro-level.Unfortunately, a 
ompletely de
entralized management of self-adaptation may12



lead to a non optimal utilization of the system resour
es and to the inabilityto satisfy goals even when system resour
es would be su�
ient. To solve thisproblem a 
oordination me
hanism between the software and the hardwareself-adaptivity 
ontrollers has been introdu
ed. This me
hanism is 
alled there
ommendation system. Whenever the RTE-level global monitor senses that aglobal goal is not rea
hed and 
annot be rea
hed by means of software adapta-tions, it noti�es the hardware (i.e., it sends a re
ommendation). The hardwarere
eives this noti�
ation and may use it for future self-adaptations, or not. Afeedba
k on the re
ommendation may be given to the RTE. The re
ommenda-tion system a
tivates some state transitions that may not normally be used bythe hardware 
ontroller. This helps the system to move toward other possibledesign points whi
h may be the optimal ones.3.3 Goal Management Interfa
e ProposalIn this se
tion we propose a possible interfa
e for spe
ifying appli
ation goalsand alternative algorithm implementations. This is a very important part ofthe system as all the self-adaptation pro
ess depends on goals. Goals are de-�ned by means of a XML �le, su
h as the one shown in Figure 3. The goalname identi�es the kind of goal to be 
onsidered; as mentioned before, it 
anbe throughput or laten
y. The weight �eld is used to assign a proper priorityto the di�erent goals and it is in the 0 − 1 range; the sum of all the weightsfor the di�erent goals must be 1 as shown in Equation 1. Threshold 
ondition
an be gt or lt that stand for greater than and less than, respe
tively. Thresh-old is used to spe
ify the threshold for the given goal. There is an alternatesyntax, spe
i�ed by the keyword MINMAX, for spe
ifying more generi
 goalsrequirements, su
h as "maximize throughput". In the MINMAX the type �eld
an assume the values min or max to spe
ify if a goal has to be minimizedor maximized, respe
tively. Thresholds are expressed in bit/s in throughputgoals and in ns in laten
y goals.In the RTE, overall goal a
hievement (G) is 
al
ulated as a weighted sum ofall appli
ation goal a
hievements by using the following formula:
G =

n
∑

i=1

wi × gi, where
n

∑

i=1

wi = 1, wi > 0 (1)
n is the number of appli
ation goals, gi signi�es the degree of a
hievementfor the goal i, and wi is the weight of the goal i. G is always greater than 0and lower than 1. The 
loser G is to 1, the 
loser the appli
ation is to satisfyits goals. G = 1 means that all the goals are satis�ed. The gi values 
an bedetermined in two di�erent ways, depending on the kind of goal 
onsidered.For a goal gi a threshold value (mT

i ) of the 
orresponding monitored variableis provided by the appli
ation through the goal management interfa
e. At any13



<GOAL name="goal_name", weight="goal_weight"><THRESHOLD 
ondition ="gt | lt" threshold="value"/> | <MINMAX type="min | max"/></GOAL> Fig. 3. XML for the spe
i�
ation of appli
ation goals.<ALGORITHM id="app_id"><IMPLEMENTATION id="impl_id"><PARAMETER name="param_name"><RANGE type="in
remental | set" range="[start, end, step℄ | [v_1, ..., v_n℄"/></PARAMETER><GOAL_EFFECT position="goal_position"/></IMPLEMENTATION></ALGORITHM>Fig. 4. XML for the spe
i�
ation of alternative algorithm implementations.instant, the a
tual monitored value (mi) is obtained through the monitoring
apabilities of the RTE. The a
hievement level of the goal 
an then be 
al
u-lated using these two values. If the threshold represents a lower bound, thefollowing formula is used to 
ompute gi:
gi =











mi/m
T
i , mi < mT

i

1, mi ≥ mT
i

(2)Whenever the threshold, instead, provides an upper bound, the formula for gibe
omes:
gi =











mT
i /mi, mi > mT

i

1, mi ≤ mT
i

(3)As mentioned before, some goals may be of the kind �maximize/minimize themonitored value mi� (MINMAX goals); in this 
ase, gi = mi/MAX(mi) forgoals that must be maximized and gi = MIN(mi)/mi for goals that must beminimized where MIN and MAX fun
tions give the minimum and maximumvalues of the monitored variable ever en
ountered during the lifetime of theappli
ation.Di�erent algorithm implementations are spe
i�ed by means of the interfa
ede�ned in Figure 4. In this XML �le we 
an de�ne di�erent alternative imple-mentations, their parameters, and a range of values for the parameters. Im-plementations are sorted in the �le a

ording to in
reasing values of the 
ostfun
tion with respe
t to a referen
e ar
hite
ture. This sorting 
an be done byusing a te
hnique similar to the one used in [18℄ in whi
h a performan
e modelof di�erent design points is 
reated at design time. Unfortunately, in our 
asewe 
annot know in advan
e whi
h hardware ar
hite
ture will be used. Thus,the sorting is done on a referen
e ar
hite
ture and will be updated by the RTEat run-time to re�e
t the real performan
e of the di�erent algorithm imple-mentations on the 
onsidered system. In the �gure, id in the ALGORITHM14



<GOAL name="throughput" weight="0.8"><THRESHOLD 
ondition="gt"threshold="1024"/></GOAL><GOAL name="laten
y" weight="0.2"><MINMAX type="min"/></GOAL> (a)
<ALGORITHM id="mpeg4_en
oding"><IMPLEMENTATION id="1"><PARAMETER name="quality"><RANGE type="in
remental"range="[1, 100, 1℄"/></PARAMETER><GOAL_EFFECT position="2"/></IMPLEMENTATION><IMPLEMENTATION id="2"><PARAMETER name="quality"><RANGE type="set"range="[10, 50, 75, 90, 100℄"/></PARAMETER><GOAL_EFFECT position="1" /></IMPLEMENTATION></ALGORITHM> (b)Fig. 5. Example of appli
ation spe
i�
ation. Spe
i�
ation of appli
ation goals in (a)and alternative implementations of an algorithm in (b)tag de�nes the identi�er of the algorithm; id in the IMPLEMENTATION tagde�nes the identi�er of the implementation 
onsidered. The PARAMETERtag is used to de�ne the parameters of the spe
i�
 implementation; ea
h pa-rameter will be named through the name attribute. The RANGE tag allowsthe programmer to spe
ify a range for the 
onsidered parameter; type de�nesthe type of range 
onsidered: it 
an be either in
remental (i.e., a range isde�ned) or set (i.e., a list of values is provided). Whenever the range typeis in
remental, the range must be provided as [start, end, step]; in the other
ase, a list of values ([v1, v2, ..., vn]) must be given. GOAL_EFFECT providesthe sorting with respe
t to the goal fun
tion to be maximized; this sorting isprovided through the position parameter.Figure 5 shows an example of appli
ation goal spe
i�
ation and of alterna-tive algorithm implementation spe
i�
ation; regarding the goals, a minimumthroughput of 1kbit/s is spe
i�ed. This is the most important requirementwith weight 0.8. The se
ond goal is spe
i�ed on laten
y, that is required to beminimized. From the implementation alternatives stand point, two alternativeimplementations for the MPEG4 en
oding algorithm are spe
i�ed; the se
ondis the one exhibiting best performan
e on the referen
e system with respe
tto the mix of goals 
onsidered. Though, the �rst implementation provides theability to spe
ify di�erent qualities for the image, ranging from 1 to 100% in in-
rements of 1; the se
ond implementation only allows for �ve di�erent qualityvalues (10%, 50%, 75%, 90%, 100%) to be utilized. Thus, the adaptation spa
eis de�ned by 105 points, 
orresponding to the di�erent 
on�gurations givenby any algorithm implementation and parameter 
ombination. The variablespa
e is given only by throughput and laten
y.15



3.4 Dis
ussion on the ModelWith our model, the general problem of designing self-adaptive systems hasbeen partitioned into several quasi-independent tasks su
h as 
reating adapt-able systems, 
reating monitorable systems, and managing adaptation to meetgoals. Furthermore, ea
h of these tasks are simpli�ed by separating the systeminto three levels su
h as software, run-time environment and hardware. Thefo
us in this paper has been more on the management of adaptation giventhat run-time environment and hardware are equipped with adaptation andmonitoring 
apabilities. On su
h a model, management of self-adaptation re-du
es to spe
i�
ation of goals, distribution of goals onto RTE and HW levels,and designing 
ontrollers for these levels. With su
h a de
entralized 
ontrollerapproa
h, the 
ontrol algorithms at ea
h level are expe
ted to be simpleras they would be responsible for a
hieving smaller number of possibly 
on-�i
ting goals due to their distribution among di�erent levels. Unfortunately,this me
hanism may introdu
e 
onvergen
e problems; furthermore, just sub-optimal solutions 
an be a
hieved by using this s
heme. To avoid both of theseproblems, we introdu
ed the me
hanism of re
ommendations. This me
hanismprovides 
oordination among the 
ontrollers at di�erent levels by also preserv-ing the advantages of lo
al self-adaptivity. In the most general sense, it 
an bethought of as a me
hanism to redistribute the goals among levels at run-time.A number of simulations has been performed to help understand better theadvantages and disadvantages of our approa
h. The results of these simulationsare presented and dis
ussed in Se
tion 44 Model SimulationThe model presented in Se
tion 3 has been des
ribed in SystemC and sim-ulated. The SystemC language [19℄ was sele
ted to des
ribe our model as iteasily allows to 
o-simulate 
on
urrently running HW/SW 
omponents as theones we are proposing in our model. The main purpose of our simulations isto show that the proposed model for self-adaptation works. Furthermore, thesimulations provide a better view on the model properties.In the SystemC model we analyzed an example in whi
h we imposed twogoals on the system: the power 
onsumption should be less than a threshold
mT

P and the throughput should be greater than a threshold mT
Th. Figure 6shows the simulation model that in
orporates the MCA paradigm. Our fo
usin this simulation is to analyze the 
oordination between the 
ontrollers atdi�erent levels. Therefore we 
ombined the adaptor and the monitor moduleswith the system module. The adaptable parameters are the 
lo
k frequen
y16
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Fig. 7. Two example 
ontrol algorithms with their RTE and HW level 
ontrollersand the implementation of the algorithm that is being run by the system.The hardware supports swit
hing between two frequen
ies (flow and fhigh).Adaptation spa
e for the RTE is given by two di�erent implementations ofthe appli
ation (Impl1 and Impl2). The parameters that 
an be monitoredare power dissipation (mP ) and the throughput (mTh) of the system. RTE
ontroller and HW 
ontroller have been assigned to meet the throughput andpower goals, respe
tively. It is well-known that running the hardware at ahigher frequen
y in
reases power 
onsumption. Moreover it is given that Impl2yields higher throughput than Impl1 on a referen
e ar
hite
ture. The use ofself-adaptivity eases the a
hievement of the desired performan
e in 
omplexsystems in whi
h some of the system parameters 
annot be de
ided at designtime. However, for simulation purposes, the system behavior has been setto produ
e values for monitored parameters in a

ordan
e with the givenadaptation parameters. Moreover the 
ontrollers have been 
onsidered to bea
tivated in de�ned periods.As the �rst simulation, the model shown in Figure 6 has been used ex
ludingthe re
ommendation unit (shown with dashes). The 
ontroller used is Con-troller 1 
onsisting of the RTE 
ontroller and the HW 
ontroller as shown inFigure 7.1a and 7.1b. The adaptation behavior obtained by means of Con-troller 1 is given in Figure 8 showing the 
hange of throughput and power17
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Fig. 8. Simulation results with Controller 1 given in Figure 7.(Tsystem = 1timeunit, TRTEController = 30timeunits, THWController = 20timeunits)values of the system in relation to the adaptation de
isions taken by the 
on-trollers. The adaptation is 
ompleted at time 60 with a su

ess by rea
hinghigh enough throughput and low enough power 
onsumption. This shows thatit is possible to 
reate de
entralized 
ontrollers that would rea
h the goals forall levels. However, designing su
h 
ontrollers is not intuitive: for example, inthe 
ontroller shown in Figure 7.1b a state 
hange from low to high frequen
yis performed even if the power goal is a
hieved in the low frequen
y state.Moreover the sele
tion of the periods of the 
ontrollers may be tri
ky. Takingthe period of the RTE 
ontroller as 40 instead of 30 time units results in alive-lo
k situation in whi
h both 
ontrollers de
ide to swit
h states at the sametime 
ontinuously while goals never get rea
hed and adaptation never stops.A more intuitive and simple way of designing 
ontrollers is to adopt a greedyapproa
h. Controller 2 as shown in Figure 7.2a and 7.2b is su
h a 
ontrollerwhere the state is preserved if the goals assigned to the 
ontroller are met. Ina real-life system, 
ontrollers like these need to be reset to their initial statewhen goals or algorithms to be exe
uted 
hange. However, this 
ontroller setdoes not allow the system to satisfy the throughput goal (as shown in Figure9, w/o re
ommendation) even if the ne
essary resour
es are available.As a next step, the e�e
t of the re
ommendation unit is observed. The re
om-mendation unit is used to 
onne
t the 
ontrollers as shown in Figure 6. RTE18
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Fig. 9. Simulation results with Controller 2 with and without the re
-ommendation unit. (Tsystem = 1timeunit, TRTEController = 30timeunits,
THWController = 20timeunits)
ontroller signals the a
tivation of the re
ommendation unit. In this example,the only possible re
ommendation to the HW 
ontroller is a signal that meansRTE 
ontroller wasn't able to meet its goals and that HW 
ontroller has todo something about it. Figure 9 shows also the adaptation behavior obtainedwith Controller 2 and the re
ommendation unit. At time 60, we observe theintervention of the re
ommendation unit seeing the 
hange of the operatingfrequen
y from flow to fhigh resulting in meeting of the goals at both levels.As observed in the results above, di�erent 
ontrollers at di�erent levels givedi�erent results in terms of 
onvergen
e of system self-adaptivity. The lessonlearned is that either some restri
tions are applied on lo
al 
ontrollers (e.g.,di�erent re
on�guration periods), or a 
oordination me
hanism (the re
om-mendation system) is utilized.5 Con
lusions and Future WorkIn this paper we have proposed a model for self-adaptive systems that in
or-porates many of the models proposed in the literature. A goal managementmethodology and goal spe
i�
ation interfa
e, along with a de
entralized and19




oordinated 
ontrol me
hanism, have also been proposed.The model has been dis
ussed � also with the help of a system state simulation� and its 
riti
al points have been put into light. The adoption of a de
en-tralized 
ontrol system for self-adaptivity provides simpli�ed management bymeans of separation of 
on
erns. Unfortunately, this de
entralized me
hanismalso introdu
es some 
ompli
ations due to the need for 
oordination amongthe di�erent 
ontrollers. This is required to guarantee 
onvergen
e on the de-
isions taken by the 
ontrollers. Otherwise some restri
tions on them shouldbe applied to guarantee at least a sub optimal management of self-adaptivity.Globally, the de
entralized 
ontrol system wins over the 
entralized one, notonly for simpli
ity reasons, but also be
ause it provides an easier inter
hange-ability of the hardware layer and better s
alability.As future work and model enhan
ements several di�erent self-adaptivity 
on-trol algorithms and parameters will be analyzed and tested. Moreover di�erents
hemes to partition the goals onto di�erent levels will be explored and theire�e
ts will be observed. Finally, a system for 
he
king the ful�llment of appli-
ation goals in a spe
i�
 system will be studied and proposed.6 A
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