
Coordinated Managementof Hardware and Software Self-adaptivityOnur Derin Alberto Ferrante Antonio Vinenzo Taddeo ∗ALaRI, Faulty of Informatis, University of LuganoVia G. Bu�, 136904, Lugano, SwitzerlandPhone: +41-58.666.4709Email: {derino, ferrante, taddeo}�alari.hAbstratSelf-adaptivity is the apability of a system to adapt itself dynamially to ahieveits goals. Self-adaptive systems will be widely used in the future both to e�ientlyuse system resoures and to ease the management of omplex systems. The frame-works for self-adaptivity developed so far usually onentrate either on self-adaptivesoftware or on self-adaptive hardware, but not both.In this paper we propose a model of self-adaptive systems and we desribe howto manage self-adaptivity at all levels (both hardware and software) by means of adeentralized ontrol algorithm. The key advantage of deentralized ontrol is in thesimpliity of the loal ontrollers. Simulation results are provided to show the mainharateristis of the model and to disuss it.Key words: self-adaptivity, reon�gurable, autonomi, goal, arhiteture, model,appliation, hardware, software, run-time environment
1 IntrodutionSelf-adaptivity is the apability of a system to adapt itself dynamially toahieve its goals. Goals are spei�ed by programmers or by users and de�neappliation requirements at high-level (i.e., as human readable requirements,suh as, for example, throughput). By de�ning requirements self adaptive om-putational systems have the ability to adapt themselves to mutating internaland external onditions [20℄ without requesting any intervention of the user.
∗ Authors appear in alphabetial order.Preprint submitted to Elsevier 7 July 2008

Self-adaptation apabilities are used to implement autonomi and life-inspiredsystems: the inreasing omplexity of omponents and the di�ulties of theirintegration are pushing the designers toward self-managing systems. Thesesystems will have the ability to self-adapt and self-on�gure to provide theperformane and the quality required [16℄ [14℄. Self-adaptive devies an beutilized in pervasive systems to ope with mutating environmental onditions.For example, a portable devie may be frequently moved from an o�e en-vironment (where power and network plugs are available) to an external en-vironment (where the devie an only be battery operated and the networkmay be available in di�erent wired or wireless forms). In this ase the be-havior of di�erent hardware and/or software omponents of the system needsto be adapted to the new onditions (e.g., to redue power onsumption).Furthermore, di�erent funtionality may be proposed to the user in the newenvironment.Self-adaptation an be supported by the software (in the appliations, in theoperating system, or both) or by the hardware. In a system both hardwareand software omponents may be self-adaptive and eah part may or maynot have the knowledge of the possible self-adaptivity of other parts. Forexample, spei� funtions an be mapped on the hardware at run-time tooptimize the exeution of ertain appliations. The management of hardwareor software self-adaptivity is a omplex task as di�erent on�iting goals mayneed to be onsidered. Jointly managing hardware and software self-adaptationis of ourse even more omplex. Furthermore, a uni�ed self-adaptation on-troller, would impose a lose ooperation between hardware and software.Thus, it would be di�ult to provide portable self-adaptive appliations. Aself-adaptive system lives in an environment whih an be de�ned as the om-plementary set of the self-adaptive system (i.e., all the things surroundingthe system). Self-adaptation an be triggered by di�erent events, like hangesin the environment, hanges in the appliations to be exeuted, or hangesin the system operational onditions (e.g., a battery operated system detetsa hange in the battery status, or a omponent that beomes faulty). Self-adaptivity not only provides funtional and operational bene�ts, but it alsoallows for self-healing. In fat, a faulty hardware or software omponent willbe automatially replaed (if replaements are available) to keep satisfying theappliation goals.This paper provides a omprehensive approah to self-adaptivity management.The target of this a approah is the model of self-adaptive system desribedin Setion 3. This model, as shown in Setion 2, is general enough to inludemany of the self-adaptive systems already disussed in the literature and toonsider a omprehensive approah to self-adaptivity both in hardware andin software omponents. The model implies a subdivision of the self-adaptivesystem in di�erent maro-layers named software and hardware. The softwaremaro-level is further divided into two levels: the former is for software appli-2

ations; the latter is for providing an uniform interfae between hardware andsoftware appliations. The framework aims at providing a ontrol mehanismthat is both simple and e�ient. The simpliity is reahed by using separationof onerns and deentralization of ontrol. The e�ieny is reahed by adopt-ing a oordination mehanism, alled reommendation system, among the on-trollers. The paradigm used for self-adaptation management at all levels is themonitor-ontroller-adapter (MCA) one. In this paradigm eah omponent isendorsed a di�erent role: the �rst one monitors the parameters of interest, theseond one deides on possible self-adaptations, and the third one enforesthem. Some simulations are presented in the paper to show the properties ofthe reommendation system and to provide a ground for disussing the model.The remaining part of the paper is organized as follows: Setion 2 gives anoverview of related researh about self-adaptivity in hardware and in software;Setion 3 presents our model; in Setion 4 the results of model simulations areshown and disussed.2 Related WorkLooking at previous works, it is possible to see some similarities and di�er-enes. As the most prevalent tehnique for self-adaptation, we see the use ofthe monitor-ontrol-adapter paradigm. In an e�ort to lassify the existing so-lutions, we identify four main design deisions: Adaptation overage is de�nedby the parts of the system a�eted by adaptations. Majorly it may onsistof hardware, software, part of a distributed system (through adaptive middle-ware) or any ombination of them. Separation of onerns is a design priniplethat deouples the funtionality of the system from the implementation of itsadaptation. Adaptation management is the deision making proess on theevolution of the system. Adaptation requirements spei�ation is the form ofdesribing the non-funtional requirements of the system. In the remainingpart of this setion we provide an overview of publiations related to self-adaptivity, lassi�ed aording to their most prominent harateristis in theview of these ategories.2.1 Adaptation overageA number of works addresses self-adaptivity in software; the simplest ap-proah adopted is to manage adaptation in the appliation ode. Althoughthis approah enables the development of ad-ho solutions for spei� adap-tation problems, it is learly not �exible enough to support a wide range ofadaptations. The use of an arhiteture-based approah eases self-adaptivity:3

the system is viewed as a omposition of onurrent omponents interon-neted by onnetors. A omprehensive adaptation methodology is presentedin [20℄. The authors propose an evolution and adaptation management in-frastruture. The evolution management proess adapts the arhiteture andthe topology of the omponents and of the system; the adaptation manage-ment proess gathers information from the operating environment, evaluatesthe observations with respet to the system requirements, plans and deploysadaptation hanges. Moreover the need of omposable omponents is under-lined. Another work desribing a omponent-based arhitetural approah ispresented in [9℄. The authors propose a framework that is both reusable, toope with a large set of systems, and that supports mehanisms to speializethe infrastruture for spei� ases. To ahieve suh objetives, the frameworkis divided into two logial parts: an adaptation infrastruture and a systemspei� adaptation model. The former provides ommon funtionality that isreusable aross di�erent self-adaptive systems; the latter is spei� to a ertainsystem and it is used to tailor the entire framework for it. In [2℄ an arhiteturedesription language named ArhWare is modi�ed to support self-adaptation.Feedbak obtained by means of software probes is used to ontrol softwareself-adaptations.A formal approah to the design of adaptive software is introdued in [23℄where an arhiteture-based approah is not onsidered. In partiular, theadaptation is oneived as a state transition from a soure program to a targetprogram inside of a suitable set of adaptation states. Eah adaptive software isrepresented by a state mahine, where eah state exhibits a di�erent behaviorand operates in a ertain domain. To guarantee system integrity and onsis-teny, loal and global properties (requirements, onstraints, and invariants)that should be satis�ed by an adaptive program for every state hange areintrodued.Self-adaptation has been addressed in distributed systems for the managementof quality of servie (QoS) mostly through adaptive middleware mehanismsand ustom adaptation management protools. A ontrol theory approah toQoS is proposed in [3℄, [4℄. In the �rst paper, the authors introdue a pas-sive adaptation task mehanism, loated in the middleware level to supportappliation-spei� adaptation. Basially, passive adaptations an be viewedas transformations of the data input stream inoming into a task (e.g. a soft-ware omponent) to �t a requires QoS. The middleware performs adaptationbetween appliations and the transport layer based on ertain QoS metris.In the seond paper, the same authors extend and improve suh a mehanismto balane and support both appliation-spei� adaptations and system-widerequirements, suh as stability and fairness. In [10℄ a mirror-based re�etionapproah for self-adaptivity is proposed. By de�nition, a re�etive system isable to perform omputations about itself; moreover, it provides introspetionand ontrol through a re�etive interfae. By applying this re�etive meha-4

nism to software omponents, the middleware an perform self-adaptation byusing the re�etive interfae of eah omponent. Adaptation behavior, arhi-teture and implementation of a omponent an be speialized to �t a spei�ontext by annotating eah implementation with quality of servie metris.Therefore, the middleware uses suh quality of servie metris to trigger theadaptation of omponents.In [1℄ an approah for managing quality of servie grid systems is presented:system resoures are managed in an adaptive way both to satisfy the quality ofservie requirements and to use the resoures e�iently. Thus, self-adaptivityis in the proess management software inluded in the operating system ofeah node. In [8℄ a similar approah is used to provide network quality of ser-vie. The self-adaptivity is inluded in the network routers and it allows thesystem to e�iently use the network bandwidth. In both the aforementionedexamples the ontrol system is omposed by sensors, a set of deision pro-edures, and atuators. [12℄ presents two protools for QoS adaptation whihallow to reover from QoS violations by hanging the distribution of QoS levelsassigned to the network omponents in distributed multimedia appliations.Some works related to hardware self-adaptation have also been proposed. In [7℄a self-adaptive hardware arhiteture is presented; this arhiteture providesself-on�guration, self-repair and/or fault tolerane apabilities by means ofself-plaement and self-routing. In [5℄ a self-adaptive embedded proessor isdesribed. This proessor is able to deploy di�erent speial instrutions atrun-time; the deision on whih speial instrutions to deploy and when, isbased on their monitored usage. A ompile-time analysis of the appliationsis performed to redue run-time overhead: the information extrated fromthis analysis is used to foreast the kind of instrutions that will be used bythe appliations in the immediate future. Thus, self-adaptation an happenwithout introduing delays in the omputation.In our work we propose a model of a system that supports both hardwareand software self-adaptivity. None of the previous works desribes a ompre-hensive approah to self-adaptivity onsidering both self-adaptive hardwareand software. Our model applies to a stand-alone system with both adaptablehardware and software. Suh a system an be a omponent of a distributed sys-tem. However we don't address management of self-adaptivity for distributedsystems. The mehanisms for self-adaptivity that we desribe both for hard-ware and for software are to be lassi�ed as arhiteture-based [20℄ [9℄ [15℄[18℄.The approahes desribed in [7℄ and in [5℄ for hardware an be easily adoptedin our hardware layer. Though to obtain the best possible performanes, theseapproahes should be modi�ed to inlude the reommendation system.5

2.2 Separation of onernsSeparation of onerns between the regular system funtionality and the adap-tation proesses is about putting di�erent onerns into di�erent omponentsthat will address them independently; this approah, even if not essential forself-adaptivity, is very important as it o�ers bene�ts in terms of generality,level of abstration, integrated approah, and salability. In [17℄ a vision ofarhiteture-based self-adaptation is provided and a referene software arhi-teture is proposed.In [15℄ another arhiteture for software self-adaptivity is presented; one of itsmain goals is again separation of onerns. Thus, a ground-level that inludesbaseline proessing and a supervisory-level that is responsible for adaptationand reon�guration are onsidered. The former provides omponents that arehighly optimized for spei� situations; the latter selet the most optimalomponents for the di�erent situations. The adoption of the supervisory-levelenables the system to provide �exibility and robustness. [21℄ implements a QoSmanagement framework in a distributed system where adaptation strategiesare separated from the ore funtionality by means of aspet languages andan enapsulation model for pakaging adaptive behaviors.One of the key onepts used in our paper is separation of onerns; thisonept is adopted in the two works desribed above as well as in [9℄ and [23℄.2.3 Adaptation managementMost of the approahes proposed in the literature use a entralized ontrollerfor self-adaptation. For example, [18℄ proposes a entralized ontroller based ononstraint-guided design spae exploration. The proposed approah is to usemodels to represent the di�erent points in the design spae of the appliation.The design spae is omposed of di�erent software omponent alternatives.The basi idea is to reate multiple-aspet models of the design points atdesign time. These models, along with system onstraints, are then embeddedinto the run-time system and used for self-adaptivity deisions. Eah onstraintan be assoiated with one or more values that are ontinuously measured atrun-time. Whenever one of these values rosses the threshold assoiated withit, the ontroller is triggered and the onstrained design spae explorationstarts.A di�erent approah is to use deentralized ontrollers instead of a entralizedone. This idea is mentioned in [22℄; its main goal is to propose a softwarearhiteture that enables appliations to be self-tuning and persistent. Thework relies on stritly de�ned and ontrolled layering of poliies and meh-6

anisms, and on the omplete ontrol of all layers. Layer oordination is alsoutilized to obtain a stable behavior of the software. [21℄ uses a mix of entral-ized and loalized QoS management in a distributed real-time system setting.Central ontrol drives the QoS management via poliies throughout the net-work whereas loal ontrol is guided by the ontrat attahed to the networkomponent.In our work self-adaptivity is managed by means of a deentralized meha-nism to simplify the loal ontrollers. However this requires some oordinationamong the loal ontrollers as also explained in [22℄: we solved this problemthrough the reommendation system. In our approah the MCA paradigmsimilar to the one proposed in [9, Figure 1℄ is adopted at all levels for manag-ing self-adaptation. This sheme is based on the feedbak oming from probesas explained also in [2℄. In our work we extended this mehanism to the ontrolof the whole hardware/software system.2.4 Adaptation Requirements Spei�ationAdaptation requirements have been spei�ed di�erently in various works. In[18℄ they are spei�ed as onstraints by Objet Constraint Language (OCL); in[21℄ they are expressed as poliies via rule-based ontrats. In [13℄ adaptationrequirements are de�ned as onstraints in a ustom requirement desriptionlanguage (RDL). In [6℄ the authors introdue a method to speify adaptationrequirements by means of goals. Goals are represented by using a graphiallanguage named KAOS; by using this language a full goal-oriented spei�a-tion of an adaptive system an be drawn.In our work we propose a goal spei�ation interfae based on XML. Goalsare spei�ed as human readable requirements for the appliations.3 Model of Self Adaptive SystemsThe design of self-adaptive systems is hallenging due to the great numberof variables to onsider. For this reason, separation of onerns as well as anarhiteture-based approah have been adopted in several sienti� publia-tions. In this setion we desribe a model that is based on the same oneptsand that provides the apability of managing self-adaptive software oupledwith self-adaptive hardware, yet providing software portability. In the �rstpart of this setion we provide an analysis of self-adaptivity requirements ofthe di�erent system omponents; we then present our model and we showhow this model satis�es the requirements. The model has been developed to7

be general, thus, no referene to any spei� implementation is made.3.1 Self-adaptation DesignAt software level self-adaptivity depends on events related to the environment(i.e., on events that are external to the system). Software an be self adaptivewithout neessarily relying on spei� support mehanisms provided by thesystem (self-adaptation embedded in the soure ode). For example, if a net-work ongestion is deteted by the software, a ompression algorithm an beativated on the data sent over the network; this self-adaptation mehanisman be entirely embedded in the software appliation. When software is on-sidered, a number of possibilities for self-adaptation are available: run-timeand dynami hange of the appliation goals (i.e., the appliation hangesits high-level requirements for the system), adaptation based on seletion ofdi�erent behaviors (i.e., a di�erent implementation of the same algorithm isseleted), and intra-algorithm adaptation (i.e., some of the parameters of theonsidered algorithm implementations are hanged at run-time). All of theseself-adaptation mehanisms ould be diretly implemented in the software ap-pliation, even though the �rst method requires support from the system to bee�etive. As shown in [9℄ an enabling tehnology for e�ient adaptation is aomponent-based approah. The duty of managing adaptation (i.e., hoosingone omponent among the others) is delegated to speialized software ompo-nents, thus providing separation of onerns. For this purpose we require:
• an expliit spei�ation of appliation goals along with a mehanism tohange goals at run-time;
• the ability to modify the appliation omponents and their interonnetionsto ahieve the expeted results;
• the software omponents to support di�erent working on�gurations (inter-hangeable at run-time).At hardware level there are two possible kinds of self-adaptation: strutural(i.e., hange in the funtional units or in the interonnetions) and on param-eters (i.e., hardware parameters � suh as frequeny � are hanged run-time).Also in this ase a omponent-based approah an be used to ease struturalself-adaptation. Self-adaptive hardware an either manage adaptations inter-nally or it an delegate (partly or entirely) this management to the softwarelayer. For providing internal self-adaptation, the hardware needs to be ableto hange its on�guration in a transparent way with respet to the softwarelayer. Whenever software support is required for self-adaptivity, the hardwaremust notify to the software its reon�guration apabilities. In both ases, thehardware may provide some information on the appliation exeution andon the parameters that an be monitored and/or diretly ontrolled by the8

software layer.As disussed in Setion 2.1, di�erent kinds of hardware arhitetures maybe utilized in a self-adaptive system. Although software developers should beenabled to write appliations without neessarily knowing the struture of theunderlying hardware and the mehanisms used for self-adaptation. In fat, themanagement of all of these details would make the job of the programmer tooomplex, it would break portability of appliations, and it would remove anyonveniene in using self-adaptive systems.3.2 The ModelThe model that we propose here has been oneived taking into aount thepoints disussed in the previous setion; it was designed with the followingassumptions in mind:
• adaptation is performed by algorithm seletion: seletion of the best algo-rithm implementation in a �xed set of available implementations, based onthe observation of the operating environment [20℄;
• fousing on the adaptation management and assuming that the evolutionmanagement (topology and omponents arhiteture) is performed somehowat middleware layer;
• omplete separation of goals among di�erent levels (i.e., a goal that is man-aged at software level is not managed also at hardware level).The last point is a restritive ondition that may be relaxed in future versionsof the model.The model is omposed by a hardware and a software level, plus an interme-diate level named Run Time Environment (RTE). The main purpose of RTEis to provide a standard interfae between software and hardware. These fun-tionalities are similar to the ones provided by other run-time environmentssuh as, for example, the Java Runtime Environment [11℄. The high-level ar-hiteture of the proposed model is shown in Figure 1. The RTE and the soft-ware level are grouped together as a maro-level (software maro-level). Toimplement the middleware funtionality for a self-adaptive system, the RTEmust be able to handle both hardware and software self-adaptivity. Thus, theRTE must provide an adaptation management framework to monitor, model,ontrol, and adapt eah software appliation. Furthermore, it must managethe available hardware resoures by means of proper hardware interfaes.Software maro-level and hardware level will monitor the appliations beingexeuted and self-adapt to reah their goals (whenever it is possible with theavailable system resoures). Eah level will hek the results provided by lower9

Fig. 1. Model of self-adaptive systems
levels along with their timing to hek whether the required goals have beenmet. By this mehanism eah maro-level is the only responsible for its owngoals; goals propagate with a waterfall mehanism from the software level tothe hardware level. The software maro-level self-adapts by hoosing di�er-ent implementations of the algorithms that are being exeuted or by hangingtheir parameters. The hardware level has the apability to self-adapt by hang-ing both hardware parameters (e.g., the lok frequeny) and the hardwarearhiteture to satisfy the goals imposed by either the software maro-levelor at design time (e.g., temperature thresholds). Deisions on reon�gurationsare anyway made loally at eah level.Figure 1 also provides a general view of the RTE arhiteture. The interfaeswith hardware and with software embody two of the most important apa-bilities of the RTE: the propagation of goals from the appliations down tothe hardware layer (if required) and the management of adaptivity. In fat,to aomplish the main adaptation features, RTE must at least provide thefollowing apabilities: interfae with hardware and software, resoure man-agement, and adaptation management. A desription of the RTE bloks thatprovide these apabilities is presented in the following setions.10

3.2.1 RTE InterfaesThe RTE-SW and the RTE-HW are the modules that provide the interfaesof the RTE with the software and with the hardware, respetively. By repla-ing the RTE-HW omponent, the RTE will be able to deal with di�erent kindsof hardware by always providing the same interfae to software appliations.The RTE-SW provides a standard interfae for self-adaptive appliations. TheRTE-SW interfae di�ers from the interfaes urrently provided in normal op-erating systems in that it also provides a proper way to speify appliationgoals and alternative implementations of the algorithms used within the ap-pliation. In the interfae a number of standard goals that an be provided bythe appliations, urrently throughput and lateny, is spei�ed. Other possi-ble goals must be translated into these ones by appliation programmers. RTEmay also enable the software appliation to diretly monitor some system pa-rameters. A list of the available parameters is published in the interfae. Eventhough the monitoring of the goals is performed by the RTE, the appliationis not allowed to perform any diret reon�guration of the system.The RTE-HW interfae is used to manage the exeution of operations by thehardware and to ollet the results of these exeutions. This interfae mayalso allow the RTE to send adaptation reommendations to the hardware.The apability of managing hardware funtional reon�guration may also beprovided. This is useful for hardware modules that are not able to self-manage.3.2.2 RTE Resoure ManagerThe Resoure Manager is a fundamental omponent of the RTE; it is respon-sible for disovering the available hardware resoures, inreasing/dereasingparallelism (given that enough resoures are available), and hanging the dis-tribution of tasks over the available resoures.3.2.3 RTE Adaptation Manager and Self-AdaptationThe two levels ontained in the software maro-level of Figure 1 (software andRTE), stritly ooperate to provide self-adaptation. As mentioned before, thesoftware level provides the RTE with a list of alternative software implemen-tations of parts of the appliations. The RTE monitors di�erent parametersand tries to satisfy the goals by seleting a proper software implementationor by reon�guring the underlying hardware, whenever funtional reon�gu-ration of the hardware is available to the RTE. The Adaptation Manager isthe omponent that atually manages suh an adaptation mehanism.The Adaptation Manager reeives as input the appliations to be exeutedalong with their goals from the software layer and it uses a MCA paradigm11

Adapter

Monitor

Controller

Monitored
parameters

RTE

Adapter

Monitor
App. 2

Monitored
parameters

Controller
Adapter

Monitor

Controller

App. 1

Monitored
parameters

Adapter

Monitor

Controller

App. n

Monitored
parameters

Adapter

Monitor

Controller

App. 3

Monitored
parameters

Monitor

Controller

Recommendations
for HW level

Recomm.

...

Fig. 2. Adaptation sheme at software maro-level.to handle the software self-adaptation. The Adapter onnets the monitoredvariables spae with the adaptation spae. The monitored variables spae isgenerated from the goals that, in turn, are translated into a ombination ofmonitorable variables. The adaptation spae is obtained from the desriptionof the possible alternative algorithm implementations provided by the appli-ations. The MCA loop uses the monitored variables spae to observe theoperating environment and to awake the ontroller for an adaptation transi-tion. An adaptation transition is performed every time a goal is not reahed.Therefore, we an assert that one a goal is spei�ed using the available mon-itored variables, suh a goal is used to build ars in the adaptation graph,where eah node represents a spei� omponent implementation. The MCAfeedbak loop is the goal-driven mehanism to move in the adaptation graph.Figure 2 shows the MCA self-adaptation sheme proposed for the softwaremaro-level. Eah appliation is monitored by a spei� monitor; for eahappliation a ontroller reeives information from its own monitor and providesproper ontrol signals to the adapter. The latter reon�gures the appliationin a proper way when required. A RTE-level MCA sheme is also adopted tohek that system goals, and not only the appliation ones, are reahed. Thissystem monitor heks the system behavior and sends proper information tothe system reommendation unit that, in turn, sends proper reon�gurationreommendations to the hardware level.The RTE itself is also self-adaptive; in fat, even the ontroller an be hangeddepending on the system onditions (e.g., di�erent algorithms an be used tomanage self-adaptation depending on the number of running appliations).As mentioned before, self-adaptivity is loally managed at eah maro-level.Unfortunately, a ompletely deentralized management of self-adaptation may12

lead to a non optimal utilization of the system resoures and to the inabilityto satisfy goals even when system resoures would be su�ient. To solve thisproblem a oordination mehanism between the software and the hardwareself-adaptivity ontrollers has been introdued. This mehanism is alled thereommendation system. Whenever the RTE-level global monitor senses that aglobal goal is not reahed and annot be reahed by means of software adapta-tions, it noti�es the hardware (i.e., it sends a reommendation). The hardwarereeives this noti�ation and may use it for future self-adaptations, or not. Afeedbak on the reommendation may be given to the RTE. The reommenda-tion system ativates some state transitions that may not normally be used bythe hardware ontroller. This helps the system to move toward other possibledesign points whih may be the optimal ones.3.3 Goal Management Interfae ProposalIn this setion we propose a possible interfae for speifying appliation goalsand alternative algorithm implementations. This is a very important part ofthe system as all the self-adaptation proess depends on goals. Goals are de-�ned by means of a XML �le, suh as the one shown in Figure 3. The goalname identi�es the kind of goal to be onsidered; as mentioned before, it anbe throughput or lateny. The weight �eld is used to assign a proper priorityto the di�erent goals and it is in the 0 − 1 range; the sum of all the weightsfor the di�erent goals must be 1 as shown in Equation 1. Threshold onditionan be gt or lt that stand for greater than and less than, respetively. Thresh-old is used to speify the threshold for the given goal. There is an alternatesyntax, spei�ed by the keyword MINMAX, for speifying more generi goalsrequirements, suh as "maximize throughput". In the MINMAX the type �eldan assume the values min or max to speify if a goal has to be minimizedor maximized, respetively. Thresholds are expressed in bit/s in throughputgoals and in ns in lateny goals.In the RTE, overall goal ahievement (G) is alulated as a weighted sum ofall appliation goal ahievements by using the following formula:
G =

n
∑

i=1

wi × gi, where
n

∑

i=1

wi = 1, wi > 0 (1)
n is the number of appliation goals, gi signi�es the degree of ahievementfor the goal i, and wi is the weight of the goal i. G is always greater than 0and lower than 1. The loser G is to 1, the loser the appliation is to satisfyits goals. G = 1 means that all the goals are satis�ed. The gi values an bedetermined in two di�erent ways, depending on the kind of goal onsidered.For a goal gi a threshold value (mT

i) of the orresponding monitored variableis provided by the appliation through the goal management interfae. At any13

<GOAL name="goal_name", weight="goal_weight"><THRESHOLD ondition ="gt | lt" threshold="value"/> | <MINMAX type="min | max"/></GOAL> Fig. 3. XML for the spei�ation of appliation goals.<ALGORITHM id="app_id"><IMPLEMENTATION id="impl_id"><PARAMETER name="param_name"><RANGE type="inremental | set" range="[start, end, step℄ | [v_1, ..., v_n℄"/></PARAMETER><GOAL_EFFECT position="goal_position"/></IMPLEMENTATION></ALGORITHM>Fig. 4. XML for the spei�ation of alternative algorithm implementations.instant, the atual monitored value (mi) is obtained through the monitoringapabilities of the RTE. The ahievement level of the goal an then be alu-lated using these two values. If the threshold represents a lower bound, thefollowing formula is used to ompute gi:
gi =

mi/m
T
i , mi < mT

i

1, mi ≥ mT
i

(2)Whenever the threshold, instead, provides an upper bound, the formula for gibeomes:
gi =

mT
i /mi, mi > mT

i

1, mi ≤ mT
i

(3)As mentioned before, some goals may be of the kind �maximize/minimize themonitored value mi� (MINMAX goals); in this ase, gi = mi/MAX(mi) forgoals that must be maximized and gi = MIN(mi)/mi for goals that must beminimized where MIN and MAX funtions give the minimum and maximumvalues of the monitored variable ever enountered during the lifetime of theappliation.Di�erent algorithm implementations are spei�ed by means of the interfaede�ned in Figure 4. In this XML �le we an de�ne di�erent alternative imple-mentations, their parameters, and a range of values for the parameters. Im-plementations are sorted in the �le aording to inreasing values of the ostfuntion with respet to a referene arhiteture. This sorting an be done byusing a tehnique similar to the one used in [18℄ in whih a performane modelof di�erent design points is reated at design time. Unfortunately, in our asewe annot know in advane whih hardware arhiteture will be used. Thus,the sorting is done on a referene arhiteture and will be updated by the RTEat run-time to re�et the real performane of the di�erent algorithm imple-mentations on the onsidered system. In the �gure, id in the ALGORITHM14

<GOAL name="throughput" weight="0.8"><THRESHOLD ondition="gt"threshold="1024"/></GOAL><GOAL name="lateny" weight="0.2"><MINMAX type="min"/></GOAL> (a)
<ALGORITHM id="mpeg4_enoding"><IMPLEMENTATION id="1"><PARAMETER name="quality"><RANGE type="inremental"range="[1, 100, 1℄"/></PARAMETER><GOAL_EFFECT position="2"/></IMPLEMENTATION><IMPLEMENTATION id="2"><PARAMETER name="quality"><RANGE type="set"range="[10, 50, 75, 90, 100℄"/></PARAMETER><GOAL_EFFECT position="1" /></IMPLEMENTATION></ALGORITHM> (b)Fig. 5. Example of appliation spei�ation. Spei�ation of appliation goals in (a)and alternative implementations of an algorithm in (b)tag de�nes the identi�er of the algorithm; id in the IMPLEMENTATION tagde�nes the identi�er of the implementation onsidered. The PARAMETERtag is used to de�ne the parameters of the spei� implementation; eah pa-rameter will be named through the name attribute. The RANGE tag allowsthe programmer to speify a range for the onsidered parameter; type de�nesthe type of range onsidered: it an be either inremental (i.e., a range isde�ned) or set (i.e., a list of values is provided). Whenever the range typeis inremental, the range must be provided as [start, end, step]; in the otherase, a list of values ([v1, v2, ..., vn]) must be given. GOAL_EFFECT providesthe sorting with respet to the goal funtion to be maximized; this sorting isprovided through the position parameter.Figure 5 shows an example of appliation goal spei�ation and of alterna-tive algorithm implementation spei�ation; regarding the goals, a minimumthroughput of 1kbit/s is spei�ed. This is the most important requirementwith weight 0.8. The seond goal is spei�ed on lateny, that is required to beminimized. From the implementation alternatives stand point, two alternativeimplementations for the MPEG4 enoding algorithm are spei�ed; the seondis the one exhibiting best performane on the referene system with respetto the mix of goals onsidered. Though, the �rst implementation provides theability to speify di�erent qualities for the image, ranging from 1 to 100% in in-rements of 1; the seond implementation only allows for �ve di�erent qualityvalues (10%, 50%, 75%, 90%, 100%) to be utilized. Thus, the adaptation spaeis de�ned by 105 points, orresponding to the di�erent on�gurations givenby any algorithm implementation and parameter ombination. The variablespae is given only by throughput and lateny.15

3.4 Disussion on the ModelWith our model, the general problem of designing self-adaptive systems hasbeen partitioned into several quasi-independent tasks suh as reating adapt-able systems, reating monitorable systems, and managing adaptation to meetgoals. Furthermore, eah of these tasks are simpli�ed by separating the systeminto three levels suh as software, run-time environment and hardware. Thefous in this paper has been more on the management of adaptation giventhat run-time environment and hardware are equipped with adaptation andmonitoring apabilities. On suh a model, management of self-adaptation re-dues to spei�ation of goals, distribution of goals onto RTE and HW levels,and designing ontrollers for these levels. With suh a deentralized ontrollerapproah, the ontrol algorithms at eah level are expeted to be simpleras they would be responsible for ahieving smaller number of possibly on-�iting goals due to their distribution among di�erent levels. Unfortunately,this mehanism may introdue onvergene problems; furthermore, just sub-optimal solutions an be ahieved by using this sheme. To avoid both of theseproblems, we introdued the mehanism of reommendations. This mehanismprovides oordination among the ontrollers at di�erent levels by also preserv-ing the advantages of loal self-adaptivity. In the most general sense, it an bethought of as a mehanism to redistribute the goals among levels at run-time.A number of simulations has been performed to help understand better theadvantages and disadvantages of our approah. The results of these simulationsare presented and disussed in Setion 44 Model SimulationThe model presented in Setion 3 has been desribed in SystemC and sim-ulated. The SystemC language [19℄ was seleted to desribe our model as iteasily allows to o-simulate onurrently running HW/SW omponents as theones we are proposing in our model. The main purpose of our simulations isto show that the proposed model for self-adaptation works. Furthermore, thesimulations provide a better view on the model properties.In the SystemC model we analyzed an example in whih we imposed twogoals on the system: the power onsumption should be less than a threshold
mT

P and the throughput should be greater than a threshold mT
Th. Figure 6shows the simulation model that inorporates the MCA paradigm. Our fousin this simulation is to analyze the oordination between the ontrollers atdi�erent levels. Therefore we ombined the adaptor and the monitor moduleswith the system module. The adaptable parameters are the lok frequeny16

Controller
Run−time Environment

Controller
Hardware

System

power

throughput

Recommendation
Unit

recommendation

goal achievement

Adaptable/Monitorable
clock frequency

algorithm implementation

activation +

Fig. 6. Simulation model
Controller 1

m
P
Tm

P
>

m
P
Tm

P
<

mT
Th

m <
Th

(2b) HW controller

f low fhigh

ImplImpl1 2

mT
Th

m >
Th

m
P
Tm

P
<

m
P
Tm

P
>

m
P
Tm

P
<m

P
Tm

P
>

(1b) HW controller

f low fhigh

mT
Th

m <
Th

mT
Th

m >
Th

mT
Th

m <
Th

mT
Th

m >
Th

(1a) RTE controller Controller 2(2a) RTE controller

ImplImpl1 2

Fig. 7. Two example ontrol algorithms with their RTE and HW level ontrollersand the implementation of the algorithm that is being run by the system.The hardware supports swithing between two frequenies (flow and fhigh).Adaptation spae for the RTE is given by two di�erent implementations ofthe appliation (Impl1 and Impl2). The parameters that an be monitoredare power dissipation (mP) and the throughput (mTh) of the system. RTEontroller and HW ontroller have been assigned to meet the throughput andpower goals, respetively. It is well-known that running the hardware at ahigher frequeny inreases power onsumption. Moreover it is given that Impl2yields higher throughput than Impl1 on a referene arhiteture. The use ofself-adaptivity eases the ahievement of the desired performane in omplexsystems in whih some of the system parameters annot be deided at designtime. However, for simulation purposes, the system behavior has been setto produe values for monitored parameters in aordane with the givenadaptation parameters. Moreover the ontrollers have been onsidered to beativated in de�ned periods.As the �rst simulation, the model shown in Figure 6 has been used exludingthe reommendation unit (shown with dashes). The ontroller used is Con-troller 1 onsisting of the RTE ontroller and the HW ontroller as shown inFigure 7.1a and 7.1b. The adaptation behavior obtained by means of Con-troller 1 is given in Figure 8 showing the hange of throughput and power17

flow

fhigh

 0 20 40 60 80 100 120 140 160 180 200

fr
eq

ue
nc

y

time (unit)

HW controller

HW adaptation

Impl1

Impl2

 0 20 40 60 80 100 120 140 160 180 200

im
pl

em
en

ta
tio

n

time (unit)

RTE controller

RTE adaptation

mP
T

 0 20 40 60 80 100 120 140 160 180 200

po
w

er

time (unit)

System Power (mP)

mTh
T

 0 20 40 60 80 100 120 140 160 180 200

th
ro

ug
hp

ut

time (unit)

System Throughput (mTh)

Fig. 8. Simulation results with Controller 1 given in Figure 7.(Tsystem = 1timeunit, TRTEController = 30timeunits, THWController = 20timeunits)values of the system in relation to the adaptation deisions taken by the on-trollers. The adaptation is ompleted at time 60 with a suess by reahinghigh enough throughput and low enough power onsumption. This shows thatit is possible to reate deentralized ontrollers that would reah the goals forall levels. However, designing suh ontrollers is not intuitive: for example, inthe ontroller shown in Figure 7.1b a state hange from low to high frequenyis performed even if the power goal is ahieved in the low frequeny state.Moreover the seletion of the periods of the ontrollers may be triky. Takingthe period of the RTE ontroller as 40 instead of 30 time units results in alive-lok situation in whih both ontrollers deide to swith states at the sametime ontinuously while goals never get reahed and adaptation never stops.A more intuitive and simple way of designing ontrollers is to adopt a greedyapproah. Controller 2 as shown in Figure 7.2a and 7.2b is suh a ontrollerwhere the state is preserved if the goals assigned to the ontroller are met. Ina real-life system, ontrollers like these need to be reset to their initial statewhen goals or algorithms to be exeuted hange. However, this ontroller setdoes not allow the system to satisfy the throughput goal (as shown in Figure9, w/o reommendation) even if the neessary resoures are available.As a next step, the e�et of the reommendation unit is observed. The reom-mendation unit is used to onnet the ontrollers as shown in Figure 6. RTE18

flow

fhigh

 0 20 40 60 80 100 120 140 160 180 200

fr
eq

ue
nc

y

time (unit)

HW controller

w/ recommendation
w/o recommendation

Impl1

Impl2

 0 20 40 60 80 100 120 140 160 180 200

im
pl

em
en

ta
tio

n

time (unit)

RTE controller

w/ recommendation
w/o recommendation

mP
T

 0 20 40 60 80 100 120 140 160 180 200

po
w

er

time (unit)

System Power (mP)

w/ recommendation
w/o recommendation

mTh
T

 0 20 40 60 80 100 120 140 160 180 200

th
ro

ug
hp

ut

time (unit)

System Throughput (mTh)

w/ recommendation
w/o recommendation

Fig. 9. Simulation results with Controller 2 with and without the re-ommendation unit. (Tsystem = 1timeunit, TRTEController = 30timeunits,
THWController = 20timeunits)ontroller signals the ativation of the reommendation unit. In this example,the only possible reommendation to the HW ontroller is a signal that meansRTE ontroller wasn't able to meet its goals and that HW ontroller has todo something about it. Figure 9 shows also the adaptation behavior obtainedwith Controller 2 and the reommendation unit. At time 60, we observe theintervention of the reommendation unit seeing the hange of the operatingfrequeny from flow to fhigh resulting in meeting of the goals at both levels.As observed in the results above, di�erent ontrollers at di�erent levels givedi�erent results in terms of onvergene of system self-adaptivity. The lessonlearned is that either some restritions are applied on loal ontrollers (e.g.,di�erent reon�guration periods), or a oordination mehanism (the reom-mendation system) is utilized.5 Conlusions and Future WorkIn this paper we have proposed a model for self-adaptive systems that inor-porates many of the models proposed in the literature. A goal managementmethodology and goal spei�ation interfae, along with a deentralized and19

oordinated ontrol mehanism, have also been proposed.The model has been disussed � also with the help of a system state simulation� and its ritial points have been put into light. The adoption of a deen-tralized ontrol system for self-adaptivity provides simpli�ed management bymeans of separation of onerns. Unfortunately, this deentralized mehanismalso introdues some ompliations due to the need for oordination amongthe di�erent ontrollers. This is required to guarantee onvergene on the de-isions taken by the ontrollers. Otherwise some restritions on them shouldbe applied to guarantee at least a sub optimal management of self-adaptivity.Globally, the deentralized ontrol system wins over the entralized one, notonly for simpliity reasons, but also beause it provides an easier interhange-ability of the hardware layer and better salability.As future work and model enhanements several di�erent self-adaptivity on-trol algorithms and parameters will be analyzed and tested. Moreover di�erentshemes to partition the goals onto di�erent levels will be explored and theire�ets will be observed. Finally, a system for heking the ful�llment of appli-ation goals in a spei� system will be studied and proposed.6 AknowledgmentsThis work was partially supported and funded by the European Commissionunder the Projet AETHER (No. FP6-IST-027611). The paper re�ets onlythe authors' view; the European Commission is not liable for any use thatmay be made of the information ontained herein.Referenes[1℄ R. Al-Ali, A. Ha�d, O. Rana, D. Walker, An approah for quality of servieadaptation in servie-oriented grids: Researh artiles, Conurr. Comput. :Prat. Exper. 16 (5) (2004) 401�412.[2℄ D. Balasubramaniam, R. Morrison, K. Mikan, G. Kirby, B. Warboys,I. Robertson, B. Snowdon, R. M. Greenwood, W. Seet, Support for feedbakand hange in self-adaptive systems, in: WOSS '04: Proeedings of the 1st ACMSIGSOFT workshop on Self-managed systems, ACM, New York, NY, USA,2004.[3℄ L. Baohun, N. Klara, An Open Task Control Model for Quality of ServieAdaptation, in: Proeedings of the 14th International Conferene of AdvanedSiene and Tehnology (ICAST 98), Naperville, Illinois, 1998.20

[4℄ L. Baohun, N. Klara, A Control-Based Middleware Framework for Quality-of-Servie Adaptations, IEEE Journal on Seleted Areas in Communiations 17 (9)(1999) 1632�1650.[5℄ L. Bauer, M. Sha�que, D. Teufel, J. Henkel, A self-adaptive extensible embeddedproessor, in: SASO, IEEE Computer Soiety, 2007.[6℄ G. Brown, B. H. C. Cheng, H. Goldsby, J. Zhang, Goal-oriented spei�ationof adaptation requirements engineering in adaptive systems, in: SEAMS '06:Proeedings of the 2006 international workshop on Self-adaptation and self-managing systems, ACM, New York, NY, USA, 2006.[7℄ J. A. Casas, J. M. Moreno, J. Madrenas, J. Cabestany, A novel hardwarearhiteture for self-adaptive systems, in: AHS '07: Proeedings of the SeondNASA/ESA Conferene on Adaptive Hardware and Systems (AHS 2007), IEEEComputer Soiety, Washington, DC, USA, 2007.[8℄ I. Foster, A. Roy, V. Sander, A quality of servie arhiteture that ombinesresoure reservation and appliation adaptation, Quality of Servie, 2000.IWQOS. 2000 Eighth International Workshop on (2000) 181�188.[9℄ D. Garlan, S.-W. Cheng, A.-C. Huang, B. Shmerl, P. Steenkiste, Rainbow:Arhiteture-based self-adaptation with reusable infrastruture, Computer37 (10) (2004) 46�54.[10℄ E. Gjørven, F. Eliassen, K. Lund, V. S. W. Eide, R. Staehli, Self-adaptivesystems: A middleware managed approah, in: A. Keller, J.-P. Martin-Flatin(eds.), SelfMan, vol. 3996 of Leture Notes in Computer Siene, Springer, 2006.[11℄ J. Gosling, H. MGilton, The java language environment (1999).URL http://java.sun.om/dos/white/langenv[12℄ A. Ha�d, G. v. Bohmann, Quality-of-servie adaptation in distributedmultimedia appliations, Multimedia Systems 6 (5) (1998) 299�315.[13℄ M. J. Hawthorne, D. E. Perry, Exploiting arhitetural presriptions for self-managing, self-adaptive systems: a position paper, in: WOSS '04: Proeedingsof the 1st ACM SIGSOFT workshop on Self-managed systems, ACM, New York,NY, USA, 2004.[14℄ L. Józwiak, Life-inspired systems and their quality-driven design., in: W. Grass,B. Sik, K. Waldshmidt (eds.), ARCS, vol. 3894 of Leture Notes in ComputerSiene, Springer, 2006.URLhttp://dblp.uni-trier.de/db/onf/ars/ars2006.html#Joz%wiak06[15℄ G. Karsai, Á. Lédezi, J. Sztipanovits, G. Péeli, G. Simon, T. Kovásházy, Anapproah to self-adaptive software based on supervisory ontrol, in: IWSAS,2001.[16℄ J. O. Kephart, D. M. Chess, The vision of autonomi omputing, Computer36 (1) (2003) 41�50. 21

[17℄ J. Kramer, J. Magee, Self-managed systems: an arhitetural hallenge, in:FOSE '07: 2007 Future of Software Engineering, IEEE Computer Soiety,Washington, DC, USA, 2007.[18℄ S. Neema, Á. Lédezi, Constraint-guided self-adaptation, in: R. Laddaga,P. Robertson, H. E. Shrobe (eds.), IWSAS, vol. 2614 of Leture Notes inComputer Siene, Springer, 2001.[19℄ Open SystemC Initiative, SystemC O�ial Website, http:/www.system.org/.[20℄ P. Oreizy, M. Gorlik, R. Taylor, D. Heimbigner, G. Johnson, N. Medvidovi,A. Quilii, D. Rosenblum, A. Wolf, An arhiteture-based approah to self-adaptive software (1999).URL iteseer.ist.psu.edu/oreizy99arhiteturebased.html[21℄ R. E. Shantz, J. P. Loyall, C. Rodrigues, D. C. Shmidt, Controlling quality-of-servie in distributed real-time and embedded systems via adaptive middleware:Experienes with auto-adaptive and reon�gurable systems, Software�Pratie& Experiene 36 (11-12) (2006) 1189�1208.[22℄ F. Vaughan, D. Munro, Self-adaptive ompliant persisent arhitetures, in:Proeedings of the Seventh Integrated Data Environments - Australia (IDEA'07)Workshop, 2000.URL http://www.s.adelaide.edu.au/users/jaaranda/publiati%ons/papers/idea-franis.pdf[23℄ J. Zhang, B. H. C. Cheng, Model-based development of dynamially adaptivesoftware, in: ICSE '06: Proeeding of the 28th international onferene onSoftware engineering, ACM, New York, NY, USA, 2006.

22

