IPSec Hardware Resource Requirements Evaluation

Alberto Ferrante and Vincenzo Piuri

DTI, University of Milan

{ferrante, piuri}@dti.unimi.it

Jeff Owen

AST, ST Microelectronics

jefferson.owen@st.com

Presentation Outline

1. IPSec;

- 2. Testbed Network and Description of Tests;
- 3. Performance Results;
- 4. Considerations on Performance;
- 5. Conclusions and Future Work.

|--|

Testbed and Tests

Performance Results

Considerations on Performance

IPSec

IPSec

Testbed and Tests

Performance Results

Considerations on Performance

Conclusions and Future Work

Is a suite of protocols

- adding security at IP (network) level;
- makes extensive use of cryptographic functions;
- it is included as security mechanism in IPv6.

AH, ESP

IPSec

Testbed and Tests

Performance Results

Considerations on Performance

- Is mainly composed of two protocols:
 - Authentication Header (AH);
 - Encapsulating Security Payload (ESP);
- both protocols can be used in:
 - transport mode;
 - tunnel mode;
- Addictional protocol:
 - IP Compression (IPComp).

Databases

IPSec uses two databases:

- the Security Policy Database (SPD);
- the Security Association Database (SAD):
 - the records are the Security Associations (SAs).

IPSec

Testbed and Tests

Performance Results

Considerations on Performance

Security Associations

Each SA contains:

- protocol/algorithms settings;
- keys for cryptographic algorithms;
- SAs are mono-directional:
 - two SAs need to be created for normal bidirectional communications.

IPSec

Testbed and Tests

Performance Results

Considerations on Performance

IPSec - Scenario

NGI 2005, Rome

Testbed Network (1)

Testbed Network (2)

IPSec

Testbed and Tests

Performance Results

Considerations on Performance

- Netperf tool was used for the tests and to measure:
 - average network throughput;
 - average CPU effort;
- a set of Bash scripts were used to measure:
 - instantaneous CPU load;
 - instantaneous network traffic.

Tests

No IPSec;

- ESP in tunnel mode:
 - NULL + HMAC-SHA-1;
 - AES 128;
 - ◆ AES 128 + HMAC-SHA-1;
 - no IPComp;
 - IPComp;
 - ◆ AES 128 + HMAC-SHA-2 256;
- ESP in tunnel mode + AH tunnel mode:
 ESP: AES 128; AH: HMAC-SHA-1.

IPSec

Testbed and Tests

Performance Results

Considerations on Performance

Performance: 100Mbit/s net.

CPU Effort and Usage

Performance: 10Mbit/s net.

Throughput

- 1. No IPSec
- 2. ESP (NULL, HMAC-SHA-1)
- 3. ESP (AES 128)
- 4. ESP (AES 128, HMAC-SHA-1)
- ESP (AES 128, HMAC-SHA-2 256) 5.
- 6. ESP (AES 128), AH (HMAC-SHA-1)
- 7. ESP + IPComp useful
- 8. ESP + IPComp not useful

CPU Effort and Usage

Performance Considerations (1)

- For secure gateways there would also be the computational load for:
 - management of databases;
 - VPN server;
 - routing, firewalling, ...;

IPSec

Testbed and Tests

Performance Results

Considerations on Performance

Performance Considerations (2)

hardware acceleration for IPSec is desirable:

- in high speed networks:
 - it is the only way to obtain desired performance;
- In low speed networks:
 - it helps optimizing overall system efficiency.

IPSec

Testbed and Tests

Performance Results

Considerations on Performance

Performance Considerations (3)

- IPComp helps improving network performance in low bandwidth environments, but:
 it is very resource consuming;
 - an accelerator is needed for devices with limited computational capabilities.

IPSec

Testbed and Tests

Performance Results

Considerations on Performance

IPSec Settings (1)

- Encryption should be used only when it is really necessary;
- suitable algorithms (and settings) need to be selected:
 - 3-DES is obsolete and slow in software!
 - 128-bit keys for AES are enough to protect most of the information.

	Ρ	S	e	С
--	---	---	---	---

Testbed and Tests

Performance Results

Considerations on Performance

IPSec settings (2)

IPSec

Testbed and Tests

Performance Results

Considerations on Performance

Conclusions and Future Work

IPComp:

- is very useful in some cases;
- is very performance killing in some others;
- its usefulness can be evaluated a priori.

Conclusions and Future Work

These tests allowed us to understand:

- IPSec requirements;
- possible settings to be used;
- a performance study in an IPv6 environment and in embedded system environment is ongoing.

IPSec

Testbed and Tests

Performance Results

Considerations on Performance