

High-level Architecture of an IPSec-dedicated System on Chip

Alberto Ferrante ALaRI, University of Lugano E-mail: ferrante@alari.ch Vincenzo Piuri DTI, University of Milano E-mail: piuri@dti.unimi.it

NGI 2007, 23/05/2007 A. Ferrante – High-level Architecture of an IPSec-dedicated System on Chip – 1 / 17

Outline

IPSec and IPSec Accelerators

Architecture of the Accelerator

Conclusions and Future Work IPSec and IPSec Accelerators Architecture of the Accelerator Conclusions and Future Work

IPSec

IPSec and IPSec Accelerators

IPSec

AH, ESP

Databases

Security

Associations

Main IPSec

Processing Steps

IPSec Accelerators

Architecture of the Accelerator

Conclusions and Future Work

Is a suite of protocols

★ adding security at IP (network) level;

 makes extensive use of cryptographic functions:

× it is resource consuming.

AH, ESP

IPSec and IPSec Accelerators

AH, ESP

IPSec

Databases

Security

Associations

Main IPSec

Processing Steps IPSec Accelerators

Architecture of the Accelerator

Conclusions and Future Work ✓ IPSec is mainly composed of two protocols:

- ✗ Authentication Header (AH);
- **×** Encapsulating Security Payload (ESP);
- ✓ both protocols can be used in:
 - **x** transport mode;
 - **×** tunnel mode.

Databases

IPSec and IPSec Accelerators

IPSec

AH, ESP

Databases

Security

Associations

Main IPSec

Processing Steps

IPSec Accelerators

Architecture of the Accelerator

Conclusions and Future Work ✓ IPSec uses two databases:

x the Security Policy Database (SPD); **x** the Security Association Database (SAD):

✓ the records are the Security Associations (SAs).

Security Associations

IPSec and IPSec Accelerators

Advanced

and Resear

Learning

Institute ALaRI

IPSec

Università

della Svizzera

italiana

AH, ESP

Databases

Security

Associations

Main IPSec

Processing Steps

IPSec Accelerators

Architecture of the Accelerator

Conclusions and Future Work Each SA contains:

- x protocol/algorithms settings;
- **x** keys for cryptographic algorithms;
- ✓ SAs are mono-directional:
 - two SAs need to be created for normal bidirectional communications.

Main IPSec Processing Steps

Università

della Svizzera italiana Advanced 👘

Learning and Research Institute ALaRI

NGI 2007, 23/05/2007 A. Ferrante – High-level Architecture of an IPSec-dedicated System on Chip – 7 / 17

IPSec Accelerators

IPSec and IPSec Accelerators IPSec AH, ESP Databases Security Associations Main IPSec Processing Steps IPSec Accelerators Architecture of the

/

Accelerator Conclusions and

Future Work

Required to support high throughput on secure gateways; *flow-through* processors:

[1]

[1] "Hifn Intelligent Packet Processing III (HIPP III)," Hifn, http://www.hifn.com/technology/HIPP_III.html

NGI 2007, 23/05/2007 A. Ferrante – High-level Architecture of an IPSec-dedicated System on Chip – 8 / 17

The SoC Architecture

- ✓ Two parts:
 - **x** I/O;**x** processing;
- shared memory
 data communication
- ✓ fast non-shared buses for memory load store;
- ✓ shared control bus.

The I/O Managers

IPSec and IPSec Accelerators

Architecture of the

Accelerator The SoC

Architecture

The I/O Managers

The DB Managers

The Memory SoC Behavior for Inbound non-IPSec Packets

Performance Extending the Processing

Capabilities

Conclusions and Future Work Recognize and multicast packet headers to the DB managers (local I/O bus);
 transfer incoming packets to the memory;
 transfer outgoing packets from the memory;
 manage fragmentation.

The DB Managers

IPSec and IPSec Accelerators

- Architecture of the Accelerator
- The SoC
- Architecture
- The I/O Managers
- The DB Managers
- The Memory SoC Behavior for Inbound non-IPSec Packets
- Performance Extending the
- Processing
- Capabilities
- Conclusions and Future Work

• Query the IPSec DBs:

- $\pmb{\times}$ requests multicasted by the I/O Managers;
- units autonomously decide
 - if they should process a request or not:
 - one of the units processes the request;
- generate commands for the operational units.

The Memory

- Architecture of the
- Accelerator The SoC
- Architecture
- The I/O Managers
- The DB Managers

The Memory

- SoC Behavior for Inbound non-IPSec Packets
- Performance Extending the Processing Capabilities
- Conclusions and Future Work

- Its efficiency is fundamental;
 4 read/write ports;
 read/write requests are decoupled from memory reads/writes:
 - prefetching and bufering on the memory interface.

SoC Behavior for Inbound non-IPSec Packets

NGI 2007, 23/05/2007 A. Ferrante – High-level Architecture of an IPSec-dedicated System on Chip – 13 / 17

Performance

IPSec and IPSec		
Accelerators		

- Architecture of the
- Accelerator
- The SoC
- Architecture
- The I/O Managers
- The DB Managers
- The Memory
- SoC Behavior for Inbound non-IPSec Packets

Performance

Extending the Processing Capabilities

Conclusions and Future Work The speed is limited by the one of the memory:**x** memory bandwidth must be 4 times the network one.

Extending the Processing Capabilities

IPSec and IPSec ✓ We can use multiple processors Accelerators Architecture of the to increase bandwidth; Accelerator The SoC load balancer to distribute traffic: Architecture The I/O Managers The DB Managers use a distributed shared-memory for SAD; X The Memory SoC Behavior for use a centralized memory for SPD; X Inbound non-IPSec Packets parallel processing X Performance Extending the of packets belonging to the same SA Processing Capabilities is not possible. Conclusions and Future Work

Università

della Svizzera

italiana

Advanced

and Resear

Learning

Institute ALaRI

Conclusions

/

/

IPSec an	d IPSec
Accelerat	ors

Advanced

Learning and Research Institute ALaRI

Architecture of the Accelerator

Conclusions and Future Work

Conclusions

Future Work

We designed a SoC:

completely implementing IPSec; efficient.

Future Work

IPSec and IPSec Accelerators

Architecture of the Accelerator

Conclusions and Future Work

Conclusions

Future Work

Simulate the architecture;

- ✓ tune the architecture;
- ✓ tune the architectural parameters.

NGI 2007, 23/05/2007 A. Ferrante – High-level Architecture of an IPSec-dedicated System on Chip – 17 / 17