
High-level Architecture
of an IPSec-dedicated System on Chip

Alberto Ferrante
ALaRI, Faculty of Informatics

University of Lugano
Lugano, Switzerland

ferrante@alari.ch

Vincenzo Piuri
Department of Information Technologies

University of Milano
Milano, Italy

piuri@dti.unimi.it

Abstract—IPSec is a suite of protocols which adds security
to communications at the IP level. Protocols within the IPSec
suite make extensive use of cryptographic algorithms. Since these
algorithms are computationally very intensive, some hardware
acceleration is needed to support high throughput.

In this paper we propose a high level architecture of a System
on Chip (SoC) which implements IPSec. This SoC has been
thought to be placed on the main data path of the host ma-
chine (flow-through architecture), thus allowing for transparent
processing of IPSec traffic. The functionalities of the different
blocks and their interactions, along with an estimation of the
internal memory size, are also shown.

I. INTRODUCTION

IPSec is mainly composed of two protocols, Authentication
Header (AH) and Encapsulating Security Payload (ESP). The
former allows authentication of each IP datagram’s headers or
– depending on the operational mode that has been selected
– of the entire IP datagram. The latter allows encryption –
and optionally authentication – of the entire IP datagram or
of the IP payload, depending on the operational mode that
has been selected, namely the transport and the tunnel modes.
The former was designed for being used in host machines,
while the latter is for secure gateways. In tunnel mode the
entire original IP datagram is processed; the result becoming
the data payload of a new IP datagram with a new IP header.
In transport mode only parts of the original IP datagram are
processed (e.g. the data payload for the ESP protocol) and
the original IP header is kept with some small modifications.
Through encryption, authentication, and other security mech-
anisms included in IPSec (e.g. anti-reply), data confidentiality,
data authentication, and peer’s identity authentication can be
provided [1], [2], [3]. In each of the protocols within the
IPSec suite, many choices for cryptographic algorithms are
available (for example AES, DES, Triple-DES, and many
others can be used within the ESP protocol). The concept
of Security Association (SA) is fundamental to IPSec. A
Security Association is a simplex “connection” that afford
security services to the traffic carried by it [4]. To secure
typical bi-directional communication between two peers, two
SAs (one in each direction) are required. Security services are
afforded to a SA by the use of AH, or ESP, but not both.
Security association establishment can be performed through
a protocol named Internet Key Exchange (IKE) [3]. IKE is

a two-phase protocol: in the first phase a bidirectional SA
– named IKE SA – is established; in the second phase this
SA is used to negotiate the parameters (protocol, protocol
settings, keys, . . .) for the IPSec SAs to be created. The
use of IKE is not mandatory for IPSec and SAs can be
established either manually or through other suitable protocols.
Two databases are involved in processing IP traffic relative to
security associations. These two databases are the Security
Policy Database (SPD) and the Security Association Database
(SAD). The former specifies the policies that determine the
disposition of all IP traffic. The latter contains parameters
that are associated with each SA. For each packet traversing
the IP communication layer, the SPD needs to be queried.
If, in conformance with the SPD, an IP datagram needs to
be processed by IPSec, the SAD needs also to be queried
to discover the parameters of the considered SA. Information
about whether a SA has already been created or not are
contained in the SPD. If a suitable SA for the IP datagram
to be processed does not exist, it needs to be established, for
example through IKE.

IPSec has proved to be computationally very intensive
[5], [6], [7]. Thus, some hardware acceleration is needed
to support large network bandwidths, as may be required
even in small secure gateways. Most of the presently used
accelerators are placed outside the main data path (off-line).
An on-line implementation has been proposed in [8]: the
accelerator is placed on the main data path. Thus, all the
network-related data flows through it; for this reason it is also
called flow-through architecture. When such an architecture
is adopted, all the other host machine processing units may
be completely unaware of IPSec: all the IPSec processing is
performed inside the accelerator and normal IP packets need
only to be processed by all the other parts of the system. A
family of commercial products which are based on the flow-
through architecture have been developed by Hifn [9]. These
accelerators combine policy lookup, SA management, packet
processing, and multi-algorithm encryption/authentication in a
single chip. An on-board IKE implementation is also option-
ally available. These chips allow for in-band and, optionally,
out-of-band control lines; they allow for 1Gbit/s full duplex
IPSec traffic processing and they are capable of processing up
to one million of packets per second. These accelerator provide

2006938380/07/$25.00 © 2007 IEEE

SA exists?

IPSec?

Query SPD

IPSec processing

Query SAD

Drop packet
and create SA

Send to upper
proc. layers

Yes

Yes

No

No

Fig. 1. Main packet processing steps for outbound IP datagrams.

the capability of storing 512 policy entries and 200 SAs on
chip. Up to 256,000 SAs are supported through off-chip RAM.

In this paper we propose an architecture of a System on
Chip (SoC) which is based on the flow-through idea. This
chip has been designed to support a high throughput for secure
gateways. The input/output interface has been designed to be
especially efficient, thus allowing for fast processing also of
the non-IPSec traffic. This interface, along with the design
of the internal architecture, should exceed the processing
capabilities of 10Gbit/s of traffic. Our chip has been initially
designed with the original version of the IPSec protocols (AH
v.1 [1] and ESP v.1 [2]) in mind; the support for the second
version of these protocols (AH v.2 [10] and ESP v.2 [11]) can
be easily added as the basic processing flow of the packets
is very similar in the two versions. No comparisons can be
performed with the internal architecture of the Hifn products,
as just some high-level schemas are available for them.

In Section II we present an analysis of the main steps
which are required to process IPSec packets. In Section III
we show the internal architecture of our SoC, we identify the
different functional blocks, their functionalities, and their way
of interacting. In the same section we also discuss the size of
the internal memory of the SoC.

II. ANALYSIS OF THE DATA PROCESSING

Figure 1 shows the different operations that must be per-
formed for each IP packet: a database query is performed and,
if a proper SA exists, the packet is processed accordingly with
the results of the query. The SA negotiation phase might take
a long time compared to normal IPSec packet processing, as
it involves communication between the two parties. Therefore,

related network traffic can be discarded until the SA is created.
This does not normally introduce any problem as packets may
be later retransmitted by the other peer. All of these operations
translate into the following processing steps:

1) the SPD is queried;
2) if the packet requires some IPSec processing:

a) the SAD is also queried, thus discovering the
operations to be performed on the packet;

b) these operations are translated into commands for
the different processing blocks;

c) the previously generated commands are applied to
the packet;

d) the I/O Unit read each packet from the memory
and outputs it on the proper I/O channel.

For nested SAs, step 2.c must be repeated as many times as
the nested SAs are.

One important fact is that at least one SPD query must
be performed for each outbound IP datagram. Considering
an overall traffic of 1Gbit/s, and the worst possible case (i.e.
the packets are received at the maximum possible rate and
their size is the smallest possible one, that is 40 bytes), the
SPD needs to be queried 3, 355, 443 times per second. In a
normal system operating at the same speed queries are usually
less then one million per second. This is due to the fact that
interarrival time between packets is often greater than zero.
Packet size is also often greater than just 40 bytes [12]. When
short bursts of packets exceeding the database query supported
speed occur, packets may be queued and processed later.
Longer bursts may cause system saturation. In that case packet
discarding may occur, depending on the policy implemented
on the system.

III. DESCRIPTION OF THE ARCHITECTURE

In a flow-through device all the IPSec protocols need to
be implemented. This meaning that all the cryptographic
algorithms as well as the database query functionalities and
IPSec header processing must be implemented on chip. De-
pending on the processing speed which needs to be supported,
different hardware/software partitions for the functional units
can be studied. The tradeoff between hardware and software
should also include considerations about flexibility. Usually,
hardware implementations provide better performance, but no
flexibility. Software implementations, on the opposite, provide
great flexibility, but non optimized performance. In our system
some flexibility might be required in the implementation of the
IPSec protocols; we have anyway to consider that protocol
updates are not very frequent as they usually require a couple
of years to be studied and accepted. Some flexibility might also
be required for the cryptographic algorithms: hardware imple-
mentations of the commonly used algorithms can be provided;
less common or newer algorithms can be supported by means
of software implementations, as also discussed in [13]. An-
other solution, that may also be used for the implementation of
the protocols, is to use reconfigurable hardware. This solution
can provide good performance (even if not as good as with

standard hardware), and great flexibility. For example, if the
cryptographic algorithms are implemented by means of recon-
figurable hardware, this hardware can be reconfigured, either
statically or dynamically, when new algorithms are required.
Dynamic reconfiguration can help supporting many different
algorithms with limited reconfigurable hardware resources.
The main problem of this solution being the reconfiguration
delays. In fact, each reconfiguration may require a long time
and should not be performed too often, as discussed in [14].

The I/O interfaces and the internal architecture of the SoC
need to be carefully designed to allow reaching the desired
performances.

A. External Interface

An efficient interface with the communication channels is
fundamental for reaching high performances. Loading data
from outside the chip may take a long time if compared with
the on-chip timings. As shown, for example, in [13], a good
practice is to decouple the I/O of the processing units and of
the chip from the data processing. Input and output buffers can
be used effectively for this purpose. The input buffers can be
easily managed as input packets must be processed in FIFO
order.

The packets that are not requiring any IPSec-related pro-
cessing only require to be forwarded from one interface of the
SoC to the other; these packets would need, in a conventional
accelerator, to be transferred anyway inside the accelerator.
Our SoC adopts the innovative idea to move the database
query unit inside the I/O-dedicated part of the SoC. This way,
packets are allowed into the accelerators only if some IPSec
processing need to be applied on them.

B. Description of the Functional Blocks

Figure 2 shows all the different functional blocks of the
SoC. The Net I/O Manager ad the Host I/O Manager process
the incoming and outgoing traffic from the network or from the
host, respectively. These two units store the incoming pack-
ets in the shared memory through dedicated communication
channels; in the same way they output the outgoing packets
that are read from the shared memory. A unit for managing
fragmentation of the IP packets is also required. In fact, both
for inbound and outbound packets, fragmentation might occur.
Inbound packets may be fragmented by any of the nodes on
the network. Therefore, packets must be reassembled before
applying IPSec processing. Outbound packets might need to be
fragmented when, after IPSec processing, their size becomes
greater then the MTU of the system. As specified in [4],
fragmentation may occur with tunnel mode only. In our SoC
fragmentation is managed by the two I/O units.

The In DB Manager, Out DB Manager, and IKE DB Man-
ager queue the different policy and SA databases and generate
the commands to be executed by the different processing units.
The memory for database storage is shown here as an off-chip
unit but it can also be placed on-chip. An on-chip memory
provides faster access times; an off-chip one provides easier
expandability. Wether it is possible or not to place the memory

Out DB
Manager

In DB
Manager

IKE DB
Manager

Host I/O
Manager

BUS
Bridge

Header
Unit

External DB Memory

Net I/O
Manager

Crypto
Engines

Temporary Storage memory

IKE
Unit

Network side Host side

Scheduler

I/O Unit

Processing Unit

Fig. 2. High-level architecture of the SoC.

DB Query
Unit

Memory
DB

SPD
Cache

SAD
Cache

On Chip

Fig. 3. A database query unit.

on-chip mainly depends on its size. Smaller memories can
fit on-chip, but might not provide enough room for all the
database entries that might be required. Speed problems of
an external memory can be masked by adopting a caching
mechanism as shown in Figure 3. The two caches are imple-
mented by using Content Addressable Memories (CAMs) [15],
[16]. This kind of memory allows to index its cells through
their contents. Therefore, it provides a good way to lookup the
security associations and the security policy records. Different
query techniques and different levels of multithreading can be
used in the database query unit, depending on its target speed.
A discussion of the detailed architecture of the database query
units is outside the scope of this paper.

The Scheduler dispatches packets to be processed to the
different processing units: the Header Unit and the Crypto-
engines. The former is for processing the headers of the
IPSec packets, while the latter is for applying cryptographic
transformations to the data. The Crypto-engines unit contains
different cryptographic cores (e.g., an AES, a DES, a SHA-
1/2, and a MD5 engines); there can be multiple instances of
each one of these cores. All of them might be enabled to
run concurrently and the Scheduler should be able to handle
them in a proper way. For example, a modified version of the
algorithm proposed in [13] can be used for this purpose. In
that paper a scheduling algorithm for an IPSec system with
multiple cryptographic accelerators is presented. The scheduler
runs on the CPU that can also be used as a data processor
by means of software implementations of the cryptographic
algorithms. In our case a CPU might not be present and if it
is, the possibility to use it also for cryptography-related data
processing should be carefully evaluated: this introduces the
possibility to saturate the CPU, thus preventing the scheduler
to assign the packets to be processed at the required speed.

Different key exchange protocols can be utilized in con-
junction with IPSec. In this work we have only considered the
IKE protocol and the manual keying. IKE works at application
level, therefore, it requires underlying network and transfer
protocols: IP and UDP in this case. Our SoC works below
the IP level, therefore the only way of providing an on-chip
IKE implementation is to also implement IP and UDP on-
chip. These must be used only during IKE negotiations and
they can be implemented in software: SA negotiation does
not require very fast packet exchanges. A different solution is
to use a separate unit for IKE. This unit can use the host’s
network stack, but it requires to access the same SAD and
SPD databases that are also accessed by the SoC. In any case
the chip must provide access to these databases as manual
keying or the use of different key exchange protocols may be
required. As an example, Figure 2 shows an on chip IKE unit
(IKE).

C. The Overall High-level Architecture

As shown in Figure 2, shared memory is adopted as data
communication model; a bus hierarchy is used for control
communications. The chip can be subdivided in two parts that
need high internal connectivity and that are interconnected
in a good way. These two parts are the I/O unit and the
processing unit. The I/O unit needs dedicated interfaces for the
incoming packets, but all the other communications between
the functional blocks and the local memory can be performed
by means of a lower speed local bus. The processing blocks
need to be connected together and to the processing memory.
Another local bus can be used for this purpose. A bus bridge
allows for bus interconnection. Data are written into the
shared memory by the I/O unit; commands are then sent
to the processing unit through the bus bridge; results of the
processing are written back into the shared memory by the
processing unit and a “data ready” signal is sent to the I/O
unit through the bus bridge. The I/O unit transfers the data

on the output. In summary, shared memory allows to improve
efficiency, by avoiding large transfers of data on internal buses.

Query requests are broadcasted by the Net I/O Manager
and by the Host I/O Manager on the local bus of the I/O-
dedicated part of the SoC. The first memory address of each
packet is also broadcasted on the same bus, along with the
corresponding query request. The database query units analyze
these requests to understand which one of them they need
to processes. As soon as the suitable DB unit completes the
query, it generates the appropriate commands, thus avoiding
to have a dedicated control unit in the SoC. The commands
can be:

• forward the packet to the other interface: this command
is sent to the appropriate I/O manager which then starts
reading the packet from the memory and sending it on
its output interface;

• apply IPSec processing (along with the details on the
operations to be applied): this command is sent to the
appropriate processing unit which can be the Scheduler
or IKE;

• drop the packet: memory blocks related to the packet are
freed and a message is sent through the appropriate output
interface.

DB queries can start before full packets are received, as only
the packet headers are required for these operations. This
speeds-up the overall packet processing. Packet forwarding
from one interface to the other, can start before they are
completely received.

Dedicated buses are used for communications between the
two I/O units and the memory and between the cryptographic
units and the memory. If a single shared bus was used a high
number of bus conflicts would have arisen, especially, but not
only, when packets needed to be forwarded. The I/O unit bus
is primarily a control bus, as most of the information that it
is carrying are commands.

The communication channels of the two I/O units are used
both for read and write operations. Both of them might need to
be used at the same time for input and output operations. This
requires a communication channel that is at least twice faster
than the network speed we want to support. Incoming data are
saved in a small buffer (its size is only of one bus transfer unit).
The common channel is used for input operations during the
even cycles and for the output operations during the odd ones.
There is no overhead as the memory unit is able to store the
context of the previous operation. By using time multiplexing
transfers can be performed in the same way as in burst mode
even if the channel is shared. The same thing happens on the
interface of the Crypto-engines, but in this case the interface
needs to be faster to support twice the load of the other two
interfaces.

Four read/write ports are required on the memory unit, one
for each of the buses. In fact, besides the three memory inter-
faces that are needed for the two I/O units and for the crypto-
engines, an additional port is needed for interfacing it with the
two buses. This interface will be used by the Header unit, the
DB managers, and the IKE unit (if present). This port does not

Fig. 4. Maximum and average memory usage comparison for different
computational capacity over required network bandwith ratio.

require a large bandwidth. The memory is required to store
the packets that are waiting to be processed. Theoretically,
this memory should be just for buffering data and for storing
intermediate results. In the reality, it will also be used for
temporary data storage, as some packets will need to wait for
some time before being processed. This is due to possible
temporary burst of packets over the rate supported by the
functional units. The size of the memory to be dedicated to this
functionality can be roughly estimated through simulation. The
SystemC [17] model we have developed for this is composed
by a processing module and an input queue. This processing
module receives information on the size of the packets and
simulates the time which is needed to process them. Input data
for the simulations have been taken from one of the Internet
Traffic Archive traces [18]. Timestamps contained there have
been multiplied by a suitable constant to obtain different
average data rates. The considered trace contains data of about
3.8 million TCP packets. In these simulations we considered
three different conditions: the required bandwidth is lower than
one provided by the processing unit; the bandwidth is equal to
the provided one; the bandwidth is higher than the provided
one. In this work we are really interested only in the first
two situations as the third one should happen only in poorly
designed networking environments. The considered processing
capability of the functional unit is of about 10Gbit/s. Average
memory requirements are always considerably smaller than
maximum ones as shown in Figure 4. Figure 5 shows that, even
when the required bandwidth is supported by the processing
units, a great number of packets need to be temporarily stored.
We have anyway to take into account that in these experiments
we were considering the average required bandwidth. This
means that packets may arrive at a considerable higher rate
than the supported one for short periods of time. When this
happens, packets are stored to be processed later. In addiction
we were considering the special condition in which no packet
dropping happens. Therefore, in real life systems a quantity
of memory which is slightly exceeding the average used one
when the processing capabilities are slightly greater then the
required bandwidth, can be adopted. This memory can be
quantified, in our case, in 1Mb. Packets that cannot be stored

Fig. 5. Comparison between average an maximum number of packets that
need to be stored depending on the ratio between computational capacity and
required network bandwith.

will be dropped and may be later retransmitted by the other
peer.

An efficient memory unit is crucial for system perfor-
mances and an architecture for supporting efficiently four
memory ports needs to be used. In this architecture data are
managed by a separate interface for each connection to the
unit; these interfaces contain read and write buffers: data are
moved from or to the buffers by dedicated units. These units
are inside the interface with the data channels. This way
read/write operatios on the I/O ports become asynchronous
with read/write operations into the shared memory. When read
operations are performed, the whole requested packet (or parts
of it) can be prefetched into the buffer. This is a convenient
operation as complete packets, and not just parts of them, are
usually processed or transferred to the output interfaces. It is
convenient for the two interfaces which are dedicated to the
I/O managers to share the addresses of the data blocks that
are stored into the write buffers and, therefore, not yet written
into memory. In this way, those two unitscan start outputting
data while they are still being written in memory by the other
interface. The number of addresses to check is in any case
very small.

The central memory has high bandwidth requirements. Let
us consider, for example, a chip designed for supporting a full
duplex 10Gbit/s throughput: the total memory bandwidth that
is required is of at least 80Gbit/s. Required physical memory
performance can be reduced by exploiting the subdivision
of the memory into different banks. Conflicts in accessing
the banks can be reduced by using the modulo interleaving
technique ([19, pp. 426–439]). By this technique memory
addresses are distributed among different memory banks that
can be accessed independently. Each memory bank need to
be connected to each management unit; for this purpose, de-
pending on the number of memory banks, different solutions,
ranging from using direct separate connections to using an
interconnection network, can be adopted. For example, the
crossbar switch topology can be used to suitably interconnect
the four managers to the memory banks [19, pp. 579–597].

Net I/O Manager
+ data_ready(address : double, length : long)
+ drop(id : int)

In DB Manager
+ startQuery(id : int, header : string)
+ add_record(parameters : string)
+ delete_record(id : string)

Host I/O Manager
+ data_ready(address : double, length : long)
+ drop(id : int)

Crypto Engine
+ process(operation : int, address : double, length : long, command : string, parameters : string)

IKE DB Manager
+ startQuery(id : int, header : string)
+ add_record(SAparameters : string)
+ delete_record(id : string)

Out DB Manager
+ startQuery(id : int, header : string)
+ add_record(parameters : string)
+ delete_record(id : string)

Storage Memory
+ write(address : double)
+ read(address : double, length : long)
+ free(address : double, length : long)

IKE Unit
+ process(address : double, length : long)
+ confirm_pkt(address : double)

Header Unit
+ process(length : long, adddress : double, parameters : string, operation : int)

Scheduler
+ process(address : long, commands : string, parameters : string)
+ notify(operation : int)
+ confirm_pkt(address : double)

Fig. 6. UML class diagram describing the relations among the different parts of the SoC.

One interesting problem is related to the central memory
management. Packets need to be saved into memory in an
effective way to avoid fragmentation. An example on how
to efficiently store packets is provided in [20]; this paper
describes a memory architecture aimed at supporting packet
priority management (for quality of service) in IPSec acceler-
ators. A simplified version of this memory architecture can be
used in non QoS-enabled devices. In fact, even if the quality
of service mechanism proposed in that paper is not utilized,
the memory address management one can be effectively used
to avoid memory fragmentation.

D. Specifications of the Functionalities

Figure 6 shows a class diagram representing the different
functional units of the SoC and their relationships. This
diagram, along with a couple of sequence diagrams, specifies
the behavior of the SoC. Figure 7 shows, as an example,
the sequence diagram describing the behavior of the system
when a non-IPSec inbound packet is received. Other sequence
diagrams, which are not shown here due to space constraints,
describe all the operations performed in the SoC. In all
cases the packets need to be loaded into the memory by the
I/O interface. In the meantime, simultaneous queries of the
inbound and IKE databases start. As explained before, a query
of the inbound databases happens only when the packet is
identified not to be IKE-related. In the same way an IKE
database query happens when a packet is identified to be

IKE-related. These decisions are independently taken by the
different DB units by looking at the headers. Other sequence
diagrams describe the operations performed internally by each
unit. For example, in Figure 8 the behavior of the In DB
Manager unit is shown.

IV. EXTENDING THE PROCESSING CAPABILITIES OF THE

SOC

There might be some cases in which our IPSec SoC is not
fast enough to support the required throughput. Developing
a faster chip might not always be possible. One possible
solution to this problem is to use multiple accelerators in
parallel; this is equivalent to using multiple network processors
as shown in [21]. Unfortunately, this approach poses some
problems related to the anti-reply IPSec mechanism. The
anti-reply mechanism provides partial sequence integrity to
detect duplicate IP packets within a certain window [4]. This
service is implemented, both for AH and ESP, by means of
a sequence counter [1], [2]. The verification and generation
of this sequence number imposes some dependencies among
different packets. Thus, the parallel processing of packets
belonging to the same SA is not possible. Parallel processing
of packets belonging to different SAs is still possible.

For parallel accelerators there are two possible configura-
tions to be adopted: the first one is to use one accelerator
for inbound traffic and another one for outbound traffic; the
second possible configuration corresponds to a more generic

memory can be freed at the end of output or after
completion of each block

can start before packet is completely
stored into memory

these 3
operations are
simultaneous

 : Host I/O Manager : Net I/O Manager : In DB Manager : IKE DB Manager : Storage Memory

: write(address : double)

: startQuery(id : int, header : string)

: startQuery(id : int, header : string)

: data_ready(address : double, length : long)

: read(address : double, length : long)

: free(address : double, length : long)

Fig. 7. Sequence diagram describing the behavior of the system when a non-IPSec inbound packet is received.

generateCommands

addRecord

forward/drop

deleteRecord

sendIKEReq

inspectHeader

wait

query

SAFound=true

addRecordReq

applyIPSec=false

outputRequestSent

applyIPSec=true and SAfound=false

deleteRecord

commandsSent=true

requestSent=true

IKEPacket=false

recordDeleted

recordAdded

startQueryReq

IKEPacket=true

Fig. 8. Statecharts describing the behavior of the In DB Manager unit.

approach which provides the capability to use two or more
accelerators without statically subdividing the flows related to
the two directions (or subdividing them among more than just
two accelerators). The former allows for a natural partition of
the traffic, while the latter requires a load balancer to distribute
it among the processors. As explained before, the load balancer
must allocate just one packet per SA at a time for processing
to avoid problems with the sequence numbers.

The management of the IPSec databases require either
some kind of collaboration among the processors, or a static
subdivision of the traffic. If the network traffic is statically dis-
tributed, each IPSec processor can manage its own databases
independently from the others. The latter is the simplest
solution, but it requires to perform an a priori estimation
of the traffic and to statically allocate it to the processors.
This may lead to have a non efficient use of the resources.

Both by using dynamic load balancing and by using a static
allocation of the inbound and outbound flows to different
processors, require to share the databases or some of the
information there contained among the processors. This can be
performed in two ways: the first one is to share the database
memory among the different processors; the second one is to
keep local memories and to broadcast the modifications of
the databases to all the other processors. The first technique
should work well if coupled with local caches and a cache
coherence protocol [19, pp. 654, 677]. The second technique
is quite inefficient from the memory usage stand point as it
requires to replicate the databases on the different processors.
For each update, it also requires to broadcast the information
about the modified records to all the other processors, thus
requiring many interprocessor communications. An interme-
diate technique, which can be very effective in this case,

is to use a distributed shared-memory architecture [19, pp.
677, 693]. In this architecture every processor stores its own
piece of the SAD and it shares it with the other processors.
SPD can be centralized and completely shared. A directory-
based coherence protocol can be used to preserve coherence
of the SAD. This architecture works well coupled with a
load balancer which tries to always allocate the processing
related to already created SAs to the same processors; packets
related to these SAs can be occasionally diverted to different
processors when their usual processor is too busy. The idea
beyond this load balancing technique has been taken from
presently used load balancers for web servers.

V. CONCLUSIONS AND FUTURE WORK

In this work we developed a high-level architecture of an
IPSec-dedicated SoC. In this architecture data flows inside the
chip are highly optimized. The speed of this architecture is
mostly limited by the one of the memory. Actually this is a
common problem for all network equipments [22, pp. 1, 8].

A study of the database query unit internal architecture
is ongoing. Some modifications to the SoC for quality of
service support are also being studied. Simulations of the
architecture will be performed to verify its correctness, to tune
its parameters (depending on the required processing speed),
and to evaluate its performances. A study of the optimal IKE
HW/SW partitioning is ongoing.

REFERENCES

[1] S. Kent and R. Atkinson, “IP Authentication Header – RFC2402,”
IETF RFC, 1998. [Online]. Available: http://www.ietf.org/rfc.html

[2] ——, “IP Encapsulating Security Payload (ESP) – RFC2406,” IETF
RFC, 1998. [Online]. Available: http://www.ietf.org/rfc.html

[3] D. Harkins and D. Carrell, “The Internet Key Exchange (IKE) –
RFC2409,” IETF RFC, 1998. [Online]. Available: http://www.ietf.org/
rfc.html

[4] S. Kent and R. Atkinson, “Security Architecture for the Internet
Protocol – RFC2401,” IETF RFC, 1998. [Online]. Available:
http://www.ietf.org/rfc.html

[5] S. Miltchev, S. Ioannidis, and A. D. Keromytis, “A Study of the Relative
Costs of Network Security Protocols.” Monterey, CA: USENIX Annual
Technical Program, June 2002.

[6] S. Ariga, K. Nagahashi, M. Minami, H. Esaki, and J. Murai, “Per-
formance Evaluation of Data Transmission Using IPSec Over IPv6
Networks,” in INET, Yokohama, Japan, July 2000.

[7] Alberto Ferrante, Vincenzo Piuri, and Jeff Owen, “IPSec Hardware
Resource Requirements Evaluation,” in NGI 2005. Rome, Italy:
EuroNGI, 18 Apr. 2005.

[8] R. Friend, “Making the Gigabit IPSec VPN Architecture Secure,” IEEE
Computer, vol. 37, no. 6, pp. 54–60, 06 2004.

[9] Hifn Intelligent Packet Processing III (HIPP III). Hifn. [Online].
Available: http://www.hifn.com/technology/HIPP III.html

[10] S. Kent, “IP Authentication Header – RFC4302,” IETF RFC, Dec.
2005. [Online]. Available: http://www.ietf.org/rfc.html

[11] ——, “IP Encapsulating Security Payload (ESP) – RFC4303,” IETF
RFC, Dec. 2005. [Online]. Available: http://www.ietf.org/rfc.html

[12] (1997) WAN Packet Size Distribution. [Online]. Available: http:
//www.nlanr.net/NA/Learn/packetsizes.html

[13] Fabien Castanier, Alberto Ferrante, and Vincenzo Piuri, “A Packet
Scheduling Algorithm for IPSec Multi-Accelerator Based Systems,” in
ASAP 2004. Galveston, TX, USA: IEEE Computer Society Press, Sep.
2004, pp. 387–397.

[14] Tyrone Tai-On Kwok and Yu-Kwong Kwok, “On the Design Of a
Self-Reconfigurable SoPC Based Cryptographic Engine,” in ICDCSW,
vol. 07, no. 7. Computer Society, 2004, pp. 876–881.

[15] Kostas Pagiamtzis. CAM Primer. University of Toronto, Department
of Electrical and Computer Engineering. [Online]. Available: http:
//www.eecg.toronto.edu/∼pagiamt/cam/camintro.html

[16] K. Pagiamtzis and A. Sheikholeslami, “Pipelined Match-lines and Hi-
erarchical Search-lines for Low-power Content-addressable Memories,”
in IEEE Custom Integrated Circuits Conference, 2003, pp. 383–386.

[17] “SystemC Official Website.” [Online]. Available: http:/www.systemc.
org/

[18] (2000) The Internet Traffic Archive. [Online]. Available: http:
//ita.ee.lbl.gov/

[19] John Hennessy and Dave Patterson, Computer Architecture: a Quanti-
tative Approach, 3rd ed. Morgan Kaufmann Pub, 15 May 2002.

[20] Luigi Dadda, Alberto Ferrante, and Marco Macchetti, “A Memory Unit
for Priority Management in IPSec Accelerators,” in ICC07. Glasgow,
Scotland: IEEE Communications Society, 24 Jun. 2007, to appear in the
proceedings of ICC 2007.

[21] John Marshall, “Cisco Systems – Toaster2,” in Network Processor
Design, P. Crowley, M. A. Franklin, H. Hadimioglu, and P. Z. Onufryk,
Eds. Morgan Kaufmann, 2003, vol. 1, ch. 11, pp. 235–248.

[22] P. Crowley, M. A. Franklin, H. Hadimioglu, and P. Z. Onufryk, Network
Processor Design. Morgan Kaufmann, 2003, vol. 1.

	Select a link below
	Return to Main Menu
	Return to Previous View

