
Self-adaptive Security at Application Level:
a Proposal

Alberto Ferrante∗, Antonio Vincenzo Taddeo∗, Mariagiovanna Sami† ∗, Fabrizio Mantovani∗, Jurijs Fridkins∗
∗ ALaRI, Faculty of Informatics, University of Lugano

Lugano, Switzerland
Email: {ferrante, taddeo, mantovaf, fridkinj}@alari.ch

† Dipartimento di Elettronica e Informazione,
Politecnico di Milano,

Milano, Italy
Email: sami@elet.polimi.it

Abstract—Self-adaptive systems have the ability to adapt
themselves to mutating external or internal conditions without
requesting any intervention of the user; the security of such
systems is influenced by those adaptations. Therefore, also the
security mechanisms that are put in place by the operating
system, should adapt to maintain the desired security level.

This paper proposes a self-adaptive framework for the system
security. This adaptation scheme allows the system to choose
the best set of security policies at every given time; this set
is determined by considering the system internal and external
conditions as well as the application requirements. The proposed
framework deals with self-adaptation at system level in order to
provide both a domain-independent and a flexible solution.

I. I NTRODUCTION

Self-adaptive computational systems have the ability to
adapt themselves to mutating internal and external conditions
without requesting any intervention of the user. Self-adaptation
can happen at different levels and can be triggered by a change
in the environment (e.g., office vs. operational field), a change
in the tasks that are assigned to the system, or a change in the
system’s operational conditions (e.g., a battery operatedsystem
detects a change in the battery status). In fact, these changes
in the operational conditions may require hardware and/or
software adaptations to keep fulfilling the requirements ofthe
applications; the ability to self-adapt software can provide a
great degree of flexibility that can be even further increased
by equipping the devices with reconfigurable hardware. This
allows the system to map specific functions on the hardware
to optimize the system performance. Creating a system as a
network of self-adaptive elements also introduces the ability
of dynamically sharing the computational resources of the
different elements so as to achieve the best cost-performance
ratios, adapting to workload and/or environment variations.

Sample applications of this technology have been shown
in [1]. For example, Section VI of that document [1, pp. 29-
33], describes a self-adaptive portable-device based system for
helping officers (firefighters, policemen, rescue teams, ...) in
their work. The portable devices can be network connected
by using different communication means. A set of sensors,

that can be used for sensing both environmental and personal
officer conditions, is connected to each device. For example,
health monitoring (both of the officer or of other people) and
face recognition can be performed by means of the system
sensors. Self-adaptivity is very useful for this kind of devices:
it can be used for allowing the system to adapt to mutating
environmental conditions (e.g., in or out of office) or to
mutating set of tasks to be executed (e.g., facial recognition
or health analysis). Portable devices usually have limitedcom-
putational resources as well as limited battery life. Therefore,
resource sharing among devices can be used to overcome
these limitations: by distributing tasks to other devices,as best
requested by operating conditions and requests, each device
can in turn access more computational resources and can
perform more computations while achieving a balanced use
of battery power.

Security might also be affected by changes in the internal
or external conditions of the system. In fact, these changes
may trigger hardware or software reconfigurations which, in
turn, may change the level of security of the system. A
simple example can be in the transition from a protected
wireless network to an unprotected one: the user may not
even notice it as long as a connection stays alive. While
this transition may be transparent to the user, it is certainly
not for the system security. Such a change may require a
change in the security settings to keep the system safe or,
anyway, to keep the level of security constant. Thus, for
self-adaptive systems, security need to be reconsidered ina
new way: a target security level should be defined and the
system should change the security settings accordingly with
the system settings to match the target security level. At the
same time, mutating system settings may require to adopt more
conservative security settings. For example, if the systemis
low on battery, it may try to change the security algorithms
used to save power. This can be done only if the newly chosen
algorithms are compatible with the target security level. All
of these security self-adaptations can be done by changing the
security policies adopted by the system. Thus, a mechanism
for security policy self-adaptivity need to be studied.

In this work we present the main concepts related to security
self-adaptivity. Security self-adaptation should be included in
a proper part of the operating system. Policies self-adaptation
will be performed by re-deploying the policies in a standard
way. Information about the hardware of the device and on the
environment, can be easily accessed at operating system level
through proper device drivers.

The applications presented in [1], in particular the one
mentioned above, have been used as a reference case.

Section II explains the related work that has been presented
in the literature; Section III explains self-adaptive security con-
cepts and outlines the possible solutions for its management.
Section IV presents a possible scenario in which to apply the
self-adaptive security concepts.

II. RELATED WORK

Aim of this section is to give an overview of previous
researches in the field of adaptive security system. The most
difficult challenge is to find a match point between the usual
static approach adopted in the design of security mechanisms
and thedynamicbehavior of adaptive systems. In the literature
there are not many publications about this topic.

We focus here on papers covering both aspects of adaptation
and security. They are presented in a top-down view according
to the security level they refer to: theoretical aspects ([2], [3]),
application and service level ([4], [5]), protocol level ([6]),
algorithm level ([7]), and primitives level ([8], [9]).

A first theoretical study is presented in [2]; this paper
proposes to design an Adaptive Security Infrastructure (ASI)
composed of three conceptual components: sensor, analysis,
and response. Such a design includes several problems: activity
coordination and synchronization between its components;
global and local nature of all components; adaptive security
policy specification and enforcement; the specification, deriva-
tion and verification of the response triggered by a complex
detection and analysis system.

In [3] the theoretical aspects concerning adaptive security
imply the use of Control Theory and Dynamic Systems
Theory. In general, adaptation is considered as the solution
of an optimal control problem. The author underlines also the
lack of reasonable implementations due to difficulties arising
from the high complexity of the security components, their
exact identification, and the restrictions on the response time
of the adaptation algorithm.

In [4] the security problems of collaborative distributed sys-
tems are addressed by dividing them in three logical domains:
client domain, tasks repository, and low-level control device
domain. The authors propose a solution at application/service
level by introducing a security framework to control the
execution of client’s tasks by the use of a Security Control
Gateway.

Another proposal at application/service level is presented
in [5] which describes an adaptive security schema for denial
of service (DoS) threats. The framework delegates to a fuzzy
feedback controller the task of selecting the suitable security
level of a node. The fuzzy feedback controller receives a set

of vulnerability metrics and evaluates the vulnerability of a
node.

Unlike the previous works, in [6] the authors describe
a self-adaptive security framework at protocol level. The
mechanism selects the optimal set of security protocols with
the best security/performance ratio. A Security Index (SI)
and a Performance Index (PI) are computed for each security
protocol. These indexes are used later to dynamically change
the security protocol set depending on the malicious level of
a node’s neighbors.

An algorithm adaptation mechanism is explained in [7];
in this paper an Adaptive Cryptographic Engine (ACE) has
been implemented on a FPGA board. The ACE changes
“on the fly” the cryptographic algorithm used to dynamically
adapt to different security parameters of the IPSec protocol.
The controller module of the ACE satisfies the incoming
configuration request by loading the suitable cryptographic
algorithm bit-streams from a crypto-library.

Adaptation of cryptographic primitives is instead presented
in [8], where the basic idea is to change the AES cryptography
key length according to the confidentiality level exposed by
the user.

The research presented in [9] deals with the implementation
of some security primitives on reconfigurable hardware; recon-
figuration decisions are based on external events that alerton
incoming attacks. Several monitors are used to detect attacks
and some controllers are used to drive the reconfigurations.

The above papers address the adaptation of system security
by proposing a solution focused on a single security aspect
(e.g., DoS attacks). We propose instead to adopt a system-
level approach which is general and centered on the concept
of security policy. Once a security policy is defined, it may
be used within our self-adaptive schema described in the
following section.

III. SELF ADAPTIVE SECURITY

In this section we discuss the security self-adaptation mech-
anism. Self-adaptation requires the ability to enforce different
sets of security policies at different instants of time. A security
policy includes all the security settings of the system: access
control as well as communication security settings. Moreover,
each policy have an associated cost that depends on the
resources required to enforce it. For example, the cost of a
policy can be computed as follows:

Px,cost = Px,fix_cost + Px,usage_cost (1)

wherePx,fix_cost represents the fixed costs of the policyx;
Px,usage_cost represents the variable part of thex policy cost.
The former describes the costs that must be sustained for
enforcing a given policy; the latter takes into account the costs
associated with using an already enforced policy. For example,
the fixed cost may be associated with possible additional
(reconfigurable) hardware that is required for enforcing the
policy; the variable cost may be associated with the power
spent for enforcing the policy for different applications.

Each application, when started, states its security require-
ments. Each requirement can be eitherhard or soft. Hard
requirements are to be considered mandatory conditions for
running the considered application. Soft requirements are
associated with desired, but non mandatory, conditions for
the application. The main application requirements can be
expressed as:

• security:
– encryption algorithm (if any);
– encryption algorithm parameters (key length, number

or rounds, ...);
– authentication algorithm (if any);
– authentication algorithm parameters (key length,

number or rounds, ...);
• speed of execution or deadlines;
• number of Functional Units required;
• priority.
In each system there are somecritical applications; those

applications are either necessary for the system to run, or
fundamental for the system role. Non-critical applications can
be denied running if their hard requirements cannot be met;
critical applications cannot be denied running and the system
must perform all the operations necessary for feeding the
resources required to satisfy their hard requirements. This may
include suspending or terminating non-critical applications.

The application requirements will be mapped to a set of
security policies; some of these policies will be compatible
with the current system status, others will not be.

Thesystem statusidentifies both a hardware and a software
configuration. Each system status defines a set of supported
security policies.

At each given time athresholdcost for the current system
status is also defined. This threshold represents the maximum
cost that the system can afford for enforcing a set of policies.
Such cost depends on the system status (e.g., battery status).

As shown in Figure 1, three different units are contributing
to the adaptation algorithm: aMonitor (M), an Analyzer(A),
and aReconfiguration Manager(RM). TheMonitor senses the
changes in the parameters that are defining the system status.
These parameters are related to the hardware, the software,
and the environment. Requests for starting new applications
or removing running applications are also received by the
monitor. When a change in the system status or an application
request is received by theMonitor, such information is sent
to theAnalysismodule; this block analyzes this piece of data
and computes a set of security policies that are compatible
with the system status and with the application requirements.
The cost of this set must be below the cost threshold defined
for the system. The set of selected policies is then sent to the
Reconfiguration Managerwhich has the ability to evaluate if
a reconfiguration of the policies should be done or not. The
following subsections describe the behavior of each module.

A. Monitor

The Monitor has to check the status of the system parame-
ters. Their values are provided by a set of sensors and physical

monitors. The values collected from the sensors are compared
to specific thresholds defining the different system states.Thus
the current state of the system is determined. The state of the
system should be updated with proper frequency, based on
the system status itself and on the policies. For example, if
the battery level is low, it may be useful to raise the checking
frequency of the battery level. Defining the system status may
not be trivial due to the mutual influence of the different
parameters. Let us suppose that only two parameters,X and
Y , completely define the status of the system. For each one of
them we can define a set of thresholds:{x0, x1, . . . , xM} and
{y0, y1, . . . , yN} for X and Y , respectively. Thus, there are
M ×N different systems status. In many cases, only a subset
of these status will be possible due to state cross-correlations.
For example, it may happen that for certain values ofX (e.g.,
in the range{xi, xj}) only a subset of values ofY are possible
(e.g.,Y need to be in the range{yk, yl}). This property can be
exploited to reduce the set of system states to be considered
during the analysis phase.

In summary, for designing theMonitor the following infor-
mation are required:

• the list of all parameters that can influence the state of
the system;

• the list of the possible correlations among parameters;
• the definition of the status thresholds of the parameters.

B. Analysis

TheAnalysismodule receives the notifications about system
status change and the requests related to newly started or
terminated applications. TheAnalysis module analyzes the
requests received and tries to find the best match between the
security policies that can be implemented and the application
requirements. The available policies are firstly analyzed to find
the set ofapplicable policies; these policies are the ones that
are compatible with the present system status (i.e. they require
resources that can be provided by the system). Finally, the
Analysismodule finds a match between the applicable policies
and the applications.

For example, let us suppose that the twelve security policies
shown in Figure 2 are available. Let us also suppose that the
system status determines the set of applicable policies named
older-system-policiesin the same figure.

Later, a change in the system status produces a new set
of applicable security policies (newer-system-policiesin the
figure) that is composed by:

Ssys−old = {P1, P2, P3, P4, P9, P10} ;

Ssys−new = {P1, P2, . . . , P6} ;

For example, a set of running or incoming applications can
be:

app =
[
A1, A2, A3, A4, A5

]
;

where underlined applications are considered critical. Each
application comes with its own security requirements which
can be either hard or soft. Security policies that satisfy all
the hard requirements are namedessential(Px). Policies that

Updated
Security Policies

Updated Monitor
Parameters

Reconfiguration
Results

(done/rejected)

Reconfig
Manager

Running

Applications

HW status and

− Power

− Available FUs

− Network used

−

Device funct.:

Applications

Incoming New

System Status
Parameters

Monitor

System Status
Updates

Device Profile

Hardware and

Analysis

Reconfiguration
Requests:
− Application
to reconfigure
− Priority of
reconfiguration
requested
− New
compatible set

Adaptive Security Layer

Requirements

Requirements

Fig. 1. Security policy adaptation scheme.

are also satisfying at least one of the soft requirements are
nameddesirable (Py). The following expressions formalize
the description of the essential and the desirable policies:

Pessential ֌ {HardReq}
∗

;

P desirable ֌ {HardReq}
∗

⊕ {SoftReq}
n

;

where ֌ represents the relation:Px satisfy {AppReq}; ∗
means that all requirements are satisfied;n is a positive
exponent indicating the number of soft requirements covered
by the corresponding security policies. For example, let us
assume that theAnalysismodule found the following sets of
security policies for the five applications above:

A1,req ⇒
[
P1, P̂2, P5

]
;

A2,req ⇒ [P1, P4] ;

A3,req ⇒
[
P5, P6, P̂10

]
;

A4,req ⇒
[
P̂4, P5, P6

]
;

A5,req ⇒
[
P7, P̂9

]
;

The current active application security policy used by eachap-
plication, within the older set of supported policies (Ssys−old),
is marked withP̂x (e.g., P̂9 for the applicationA5).

Looking at theSsys−new set of Figure 2, we can see thatP9

and P10 are not compatible anymore with the system status.
Also P7 is not in the set of applicable policies. Looking at
the application requirements, we can determine thatP3 is
useless, as it does not satisfy any requirement of the present
applications.

By considering the above data, theAnalysismodule simply
computes the following sets of application security policies
satisfying the applications requirements, defined as:

Ssatisfy ⊆ Ssys−new

P1 P2

P3 P4

P5 P6

P7 P8

Older-System-Policies

P12

P11

P10

P9

Newer-System-Policies

Fig. 2. Different sets of policies depending on the system status. Desirable
policies are denoted by continuous lines; dashed lines represent desirable
policies.

that is equal to:

Ssatisfy = Sessential ∪ Sintermediate ∪ Sdesirable

The setSessential contains the application security policies
Pi marked as essential;Sdesirable contains the policies that
are defined as desirable;Sintermediate is composed by the
policies that are essential for some applications and desirable
for others. The intersection of these sets is empty. We define
the fair set as:

Sfair = Sintermediate ∪ Sdesirable

In our example, the previous definitions give the following

P1

P4
P6

P5

P2

Essential

Satisfy

Intermediate

Desirable

Fair

Fig. 3. Example of policies sets computed by theAnalysismodule.

TABLE I
THE INITIAL COVERAGE TABLE FOR THESfair SET (TABLE 1) AND FOR

THE Ssatisfy SET (TABLE 2)

I.1:
A1 A2 A3 A4

P2 x
P5 x x x

I.2:
A1 A2 A3 A4

P1 x x
P2 x
P4 x x
P5 x x x
P6 x x

sets:

Sessential =
{
P 2

1
, P 2

4
, P 2

6

}
;

Sintermediate =
{
P 3

5

}
;

Sdesirable = {P2} ;

Sfair = Sintermediate ∪ Sdesirable =

=
{
P2, P

3

5

}
;

The exponents are used to count the number of applications
that are compatible with the associated policies. Figure 3
shows a graphical representation of the sets of our example.
Once theSessential, Sintermediate, and Sdesirable sets have

been determined, a coverage algorithm similar to the Quine-
McCluskey coverage table [10, pp. 220, 229] is run on the
Sfair set. The coverage table corresponding to the previous
example is shown in Table I.1. The rows of the table cor-
respond to the different policies; the columns correspond to
the different applications. A mark in the cell(i, j) means
that the policyPi is suitable for the applicationAj (i.e., the
policy Pi covers the requirements of the applicationAj). If a
possible solution is found by applying the coverage algorithm
and its global cost is lower than the desired threshold, the
selection process terminates. If a possible solution is not
found, the coverage method is applied on theSsatisfy set
(that isSessential ∪Sdesirable∪Sintermediate). If the coverage
algorithm applied on theSfair set provides a solution, but
this solution has a cost that is over the threshold, a branch and
bound method [11] is applied on the same set. If a certain set of
policies is not able to provide a suitable solution (i.e., atleast
one application is not covered), the coverage table will have

Found
a solution?

Found
a solution?

Apply

Quine−McCluskey

on S_fair

Apply

Quine−McCluskey

on S_satisfy

Apply

Branch and bound

on S_fair

New
application?

Can use
active policies?

No solution Solution found

Apply

Branch and bound

on S_satisfy

Cost below
the threshold?

Cost below
the threshold?

Cost below
the threshold?

Cost below
the threshold?

yes

no no

noyes

yes

no

yes

no

yes

yes

no

no yes

yes

no

Fig. 4. Application of different algorithms to select a set ofpolicies.

at least one column without any mark. Therefore, by verifying
that no empty column is present in the table, the analysis
module is able to determine if a solution for the considered
set of policies is allowed. If the set of policies identified as a
solution, has a cost over the system threshold, a new solution
is computed by using a branch and bound method. The cost of
the different policies and the cost threshold will be considered
in the branch and bound method to optimize the search of
the minimum. Figure 4 summarizes all the possible steps to
determine the set of policies to be used.

The coverage method selects the policies that are associated
with the highest number of applications. Thus, it allows saving
resources in implementing the policies. The provided solution
may not be the optimal one in terms of global cost. The
branch and bound method is slower, but it provides an optimal
solution in term of cost. Whenever a solution is not found and
at least one application has no policy associated with it (i.e.,
there is at least an empty column in the table of coverage
when theSsatisfy set is considered), the related applications
are discarded and the search of a solution is restarted. If one
of the discarded applications is critical, the system should go
in an error state. If a solution is not found due to a cost above
the threshold for of all the possible solutions, one of the non
critical application has to be suspended or removed from the
system. To study a way to select which application to remove
is beyond the scope of this paper.

In our example, the coverage algorithm applied onSfair

does not find a solution (i.e., not all the applications can be
covered by the policies contained in that set); therefore, the
coverage algorithm is applied on the larger set (Ssatisfy). P1

andP5 or P4 andP5 are selected by applying this procedure.
If for some reason the system threshold is changed, the

Monitor will inform the Analysis module and will provide
the new system threshold. TheAnalysismodule will check if
the current set of policies still satisfies the new conditions. If
not, the set of policies will be recomputed by following the
algorithm described above.

When a request related to a new application is received,
the Analysis module computes the sets of security policies
that are satisfying the new application requirements; then, if
these requirements are satisfied by the active policies and the
updated security cost (see Equation 1) is below the system
threshold, no reconfiguration is necessary. If any of these
conditions is not met, theAnalysis module will recompute
the set of policies by applying the algorithm described above.
When a terminate application request is received, a new set of
policies is computed to optimize the system performance.

At the end ofAnalysismodule operations, the set of selected
policies, along with the cost of the new configuration and the
strength of the request is sent to theReconfiguration Manager
(RM). A reconfiguration request can be weak or strong.
Weak reconfiguration requests are typical for changes in the
system conditions (e.g., the battery is draining); these request
lead to reconfigurations in a short amount of time. Strong
reconfiguration requests usually happen when new applications
are added to the set of currently running applications. This

t

Sys-cost

ST

CC

t1 t2 t3 t4 t5 t6

ds

dt

A

A

A

t7

Fig. 5. Example of adaptation diagram.

kind of requests should be satisfied immediately. A request
for updating the cost of the currently used set of policies can
be also issued toRM. In fact, such a situation can happen when
an application is added or removed from the set of running
application, but no change in the set of policy is required.

C. Reconfiguration Manager

The Reconfiguration Managerreceives the possible recon-
figuration requests from theAnalyzermodule; it checks the
reconfiguration request and, if necessary, it reconfigures the
system. The reconfiguration requests contain the new set of
selected policies, the list of applications that are associated
with them, the cost of the new set, and the cost threshold.
RM decides if a reconfiguration has to take place, depending
on the current configuration and its cost. As explained before,
the reconfiguration request may be strong or weak. In the first
case, the reconfiguration must occur immediately. A strong
request may happen when new applications, that cannot be
run with the current set of policies, need to be run. When
the reconfiguration request is weak, the old configuration is
maintained byRM for a time given by a constant divided
by the difference between the current cost and the one of
the new policy. Figure 5 represents this behavior. In this
figure, ST is the system threshold,CC is the cost of the
current configuration;ds is the difference betweenCC and
the cost of the new policy;A is a constant (to be determined
experimentally) such asds×dt = A. Therefore,dt is the time
for which the old configuration is allowed to be maintained
(dt = A/ds). The higher the difference between the cost of the
new configuration and the cost of the current one, the lower
the time that the current configuration is allowed to be used
after the reconfiguration request is received. This mechanism
is valid both for reconfigurations triggered by changes in the
cost threshold and for the ones triggered by changes in the
system status. Reconfigurations are not applied immediately
to filter out reconfiguration requests that last only for a short
time.

IV. SCENARIO EXAMPLE

In this section a case study is proposed. The methodology
described in the previous section, is applied on this sample
system. In this section we show how the self-adaptive security
system can adapt the security settings in response to a change
in the internal and/or external conditions.

The considered application is a software that requires, as
a hard requirement, message authentication and, as a soft
requirement, message encryption. The application is unaware
of the security protocols and algorithms that the system will
use to satisfy its requirements.

Let us suppose that the system supports the IPSec protocol
[12]; this protocol can be used for creating a secure channel.
Let us also suppose that the AES algorithm (with 128 and 256
key length) can be used for encryption and the HMAC-SHA-1
and HMAC-SHA-2 algorithms can be used for authentication.
For the shake of simplicity, let us assume that a different
security policy is used for each security algorithm; policy
costs are computed considering the power consumption of
the algorithms. In our case, the power consumption cost of
HMAC-SHA-2 will be higher than HMAC-SHA-1 as well as
for the AES-256 and AES-128. The cost threshold, in this
simple case, will only include power consumption.

Our self-adaptive system will adapt the security algorithms
based on the available battery energy. Let us suppose that
in the initial status the system has the full battery energy
available; let us also suppose that the system requirements
are satisfied by the HMAC-SHA-1 and by the AES-128
algorithms. Here follows a list of possible reconfiguration
events that may occur during the system lifetime. Example
of possible events that will trigger adaptations are:

• a new incoming application may require a higher security
level; the system will reconfigure to support HMAC-
SHA-1 and AES-256, given that their cost is under the
cost threshold;

• a change in the battery level can decrease the cost
threshold; thus, the system may go back to the AES-128
algorithm;

• if, for a system failure the AES algorithms are not
available any more, the applicable policies are affected.
The applications that are using all the AES-based policies
will be terminated. Our reference application can still run
because its hard requirements are still satisfied by using
only HMAC-SHA.

As shown in this simple scenario, the adaptation is transparent
for the application.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we have proposed a comprehensive and
domain-independent methodology for system security self-
adaptivity. Security policy self adaptivity allows the system
to keep the same security level even when the internal and/or
external conditions change.

Future work have to be put in further refining the self-
adaptation scheme, in studying the parameters that have to

be monitored, and in defining the precise contents of the
application security policies. The security self-adaptive system
requires to be simulated and its parameters require to be tuned
according to the results of the simulations.

VI. A CKNOWLEDGMENTS

This work was partially supported and funded by the
European Commission under the Project AETHER (No. FP6-
IST-027611). The paper reflects only the authors’ view; the
European Commission is not liable for any use that may be
made of the information contained herein.

REFERENCES

[1] L. Bisdounis, P. Bonnot, K. Nasi, S. Koutsomitsos, A. Taddeo, A. Fer-
rante, O. Heron, and M. Danek, “A self-adaptive embedded technologies
for pervasive computing architectures; applicative scenarios and basic
requirements. Metrics definition,” European Project deliverable D4.1.1,
07 2006, AEther EU Project, Contract Number: IST-027611.

[2] L. Marcus, “Introduction to logical foundations of an adaptive security
infrastructure,” in Proceedings of FCS’04 Workshop on Foundations
of Computer Security, ser. General Publications, A. Sabelfeld, Ed.,
vol. ISBN: 952-12-1372-8, no. 31, June 2004, pp. 251–266. [Online].
Available: http://www.tucs.fi/publications/attachment.php?fname=G31.
pdf

[3] A. Shnitko, “Pratical and theoretical issues on adaptive security,”
in Proceedings of FCS’04 Workshop on Foundations of Computer
Security, ser. General Publications, A. Sabelfeld, Ed., vol. ISBN:
952-12-1372-8, no. 31, June 2004, pp. 267–282. [Online]. Available:
http://www.tucs.fi/publications/attachment.php?fname=G31.pdf

[4] Y. Xu, L. Korba, L. Wang, Q. Hao, W. Shen, and S. Lang, “A security
framework for collaborative distributed system control at the device-
level,” in Industrial Informatics, 2003. INDIN 2003. Proceedings. IEEE
International Conference on, 21-24 Aug. 2003, pp. 192–198. [Online].
Available: http://ieeexplore.ieee.org/iel5/9109/28887/01300269.pdf

[5] S. Alampalayam and A. Kumar, “An adaptive security model for
mobile agents in wireless networks,” inGlobal Telecommunications
Conference, 2003. GLOBECOM ’03. IEEE, vol. 3, 1-5 Dec. 2003,
pp. 1516–1521vol.3. [Online]. Available: http://ieeexplore.ieee.org/iel5/
8900/28134/01258491.pdf?tp=&arnumber=1258491&isnumber=28134

[6] C. Chigan, L. Li, and Y. Ye, “Resource-aware self-adaptive security
provisioning in mobile ad hoc networks,” inWireless Communications
and Networking Conference, 2005 IEEE, vol. 4, 13-17 March 2005,
pp. 2118–2124Vol.4. [Online]. Available: http://ieeexplore.ieee.org/iel5/
9744/30731/01424845.pdf?tp=&arnumber=1424845&isnumber=30731

[7] A. Dandalis and V. K. Prasanna, “An adaptive cryptographic engine
for internet protocol security architectures,”ACM Trans. Des. Autom.
Electron. Syst., vol. 9, no. 3, pp. 333–353, 2004.

[8] M. El-Hennawy, Y. Dakroury, M. Kouta, and M. El-Gendy, “An adaptive
security/performance encryption system,” inElectrical, Electronic and
Computer Engineering, 2004. ICEEC ’04. 2004 InternationalConfer-
ence on, 5-7 Sept. 2004, pp. 245–248.

[9] G. Gogniat, T. Wolf, and W. Burleson, “Reconfigurable security
architecture for embedded systems,” inProceedings of the 39th
Hawaii International Conference on System Sciences, HICSS2006
/ MOCHA 2006, vol. Mobile Computing Hardware Architectures:
Design and Implementation Design Symposium (MOCHA 2006),
Kauai, Hawaii, USA2, January 4 2006. [Online]. Available: http:
//www.ecs.umass.edu/ece/wolf/pubs/2006/hiccs2006.pdfs

[10] Edward J. McCluskey,Logic Design Principles. Prentice-Hall Inc.,
1986.

[11] A. H. Land and A. G. Doig,An Automatic Method for Solving Discrete
Programming Problems. Econometrica, 1960, vol. 28, pp. 497–520.

[12] R. Yuan and W. T. Strayer,Virtual Private Networks. Addison Wesley,
2001.

