
ALaRI Tools Howto

Alberto Ferrante

October 25, 2012

This document explains how to run the tools installed at ALaRI.

How to Cross Compile for the PISA Architecture

A PISA cross-compiler is available in the opt/wattch alari/bin/ directory. To
compile with that cross-compiler:

1. Type

. /opt/wattch_alari/start_wattch_gcc

(just the 1st time: it is needed to set the environment variables).

2. Type (where the source file is located)

/opt/wattch_alari/bin/gcc source_file -o outfile

How To Run Simplescalar Tools

1. Compile for the PISA architecture (see previous section);

2. type:

/opt/simplescalar/pisa/simplesim/<simulator> <compiled_program>

where <simulator> can be: sim-fast, sim-cache, sim-profile, and sim-
outorder. See simulators help for details on possible parameters.

How To Run Wattch

1. Compile for the PISA architecture (see previous section);

2. type

/opt/wattch_alari/bin/wattch <compiled_program>

See simulator help for details on possible parameters.

1



How To Read the Wattch Simulation Results

From the Wattch readme file.

SIMULATION AND RESULTS:

Running Wattch should be just like running sim-outorder. Provide it

with your processor configuration parameters, input binary, and input

data set. There aren’t any additional command line parameters, but

there are some hard-coded parameters that you could change. For example,

the technology settings (in power.h) and the choice of static vs dynamic

activity factors (power.h).

These are the additional statistics that are generated by Wattch:

1) Stats that hold the "total power usage" (actually energy) of the

unit over the program execution. This is basically the summation of

the power usage on each cycle. We record these stats for each hardware

unit that we model (rename, bpred, etc), each pipestage (fetch, dispatch,

issue), as well as the total power dissipation. We also record these

stats for each conditional clocking style that we model. The four

conditional clocking styles currently implemented are:

a) no conditional clocking -- ie "rename_power"

b) simple conditional clocking; ie. "rename_power_cc1"

c) aggressive, ideal (0 power consumed when turned off) conditional

clocking; ie. "rename_power_cc2"

d) aggressive, non-ideal (some fraction is still consumed when disabled)

conditional clocking; ie. "rename_power_cc3"

2) Stats that hold the average power usage. This is basically

total_power_usage divided by the number of cycles.

Probably the most interesting clock gating style is cc3. If you just

want to get one power number and don’t care about unit breakdowns look at

"avg_total_power_cycle_cc3".

3) Unit access statistics are also generated as well as the max number

of of accesses for the different units. We also track the maximum

processor power dissipation on any given cycle. (max_cycle_power_cc*)

2


