
Simulation of a Self-adaptive Run-time Environment with
Hardware and Software Components

Onur Derin Alberto Ferrante

ALaRI Institute, Faculty of Informatics
Università della Svizzera italiana, Lugano, Switzerland

{derino, ferrante}@alari.ch

ABSTRACT
In this paper we describe a new way for simulating self-
adaptive systems developed by relying on a component-
based approach, this approach proves to be useful both in
easing self-adaptivity and in providing the ability to mix
hardware and software elements.

Our simulation method is based on SACRE (Self-Adaptive
Component Run-time Environment), a framework we have
defined in Java for simulating self-adaptive systems.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming; D.3.4 [Programming Languages]: Processors—
run-time environments; I.2.2 [Artificial Intelligence]: Au-
tomatic Programming—program modification

General Terms
Experimentation, Performance, Reliability, Theory

Keywords
Component-based design, HW/SW co-design, Self-adaptive
systems, Simulation

1. INTRODUCTION
Multi-core architectures are inevitable if one needs to in-

crease performance and still keep lower power profiles. Com-
putational requirements for some applications even demand
these architectures to be heterogeneous. This doesn’t help
but add on to the problems of exploiting these architectures
to the most possible extent. To use the parallelism offered by
these architectures new programming models are required.
Furthermore, obtaining dependability, low-power consump-
tion, and security is not automatic and proper control mech-
anisms should be put in place to reach these goals. One
possible answer to these challenges is adopting a component-
based approach where the application is specified as a net-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SINTER’09, August 25, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-681-6/09/08 ...$10.00.

work of components that are mapped to the heterogeneous
units of the architecture. This calls for a middleware that
provides standard interfaces to the components that may
be residing on different cores, custom functional blocks, or
reconfigurable fabric. Moreover, this middleware can pro-
vide the basis for the development of a distributed run-time
environment that manages the adaptation of the applica-
tion for high-level goals such as fault-tolerance, high per-
formance and low-power consumption. Adaptations, at this
level, can be performed by migrating the components be-
tween the available resources and/or by increasing paral-
lelism by instantiating multiple copies of the same compo-
nent on different resources.

Such a self-adaptive run-time environment constitutes a
fundamental part in enabling system-wide self-adaptivity.
Self-adaptivity is the capability of a system to adapt it-
self dynamically to achieve its goals. Goals are specified
by programmers or by users and define application require-
ments at high-level (i.e., as human readable requirements,
such as throughput). By defining requirements and adap-
tation mechanisms we give self-adaptive computational sys-
tems the ability to adapt to mutating internal and exter-
nal conditions without requesting any intervention of the
user [9]. A self-adaptive system lives in an environment
which can be defined as the complementary set of the self-
adaptive system (i.e., all the things surrounding the sys-
tem). Self-adaptation can be triggered by different events,
like changes in the environment, changes in the applications
to be executed, or changes in the system operational con-
ditions (e.g., a battery operated system detects a change in
the battery status, or a component that becomes faulty).
Self-adaptivity not only provides functional and operational
benefits, but it also allows for self-healing. In fact, a faulty
hardware or software component will be automatically re-
placed (if replacements are available) to keep satisfying the
application goals. Self-adaptation capabilities are used to
implement autonomic and life-inspired systems. These sys-
tems will have the ability to self-adapt and self-configure
to provide the performance and the quality required [7] [5].
Self-adaptive devices can be utilized in pervasive systems to
cope with mutating environmental conditions. For example,
a portable device may be frequently moved from an office en-
vironment (where power and network plugs are available) to
an external environment (where the device can only be bat-
tery operated and the network may be available in different
wired or wireless forms). In this case the behavior of dif-
ferent hardware and/or software components of the system
needs to be adapted to the new conditions (e.g., to reduce

power consumption). Software-defined radio (SDR) [1] is a
good example application that demands a platform such as
the one mentioned above. Introducing self-adaptivity to an
SDR system requires self-adaptivity at all levels of the sys-
tem from the application to the operating environment and
the hardware platform.

In this paper we propose a way to simulate hardware-
software component-based self-adaptive systems. Applica-
tion components and their mapping onto hardware resources
are simulated at functional level. Components, that im-
plement different functionalities, are selected and arranged
together to compose applications. Components can be sub-
stituted by other components offering similar functionalities
(e.g., different implementations of an encryption algorithm,
or different encryption algorithms of the same class), thus
easing self-adaptivity through replacement and reconfigura-
tion of components and through reconfiguration of the net-
work of components. We not only support self-adaptation
through the replacement of components or through their re-
configuration, but we also support changes in the topology
of applications, for example to accommodate parallel com-
ponents with the aim of satisfying high-level goals such as
performances and/or enhanced reliability.

In the remaining part of this paper we first provide an
overview of related works (Section 2); in Section 3 we then
provide a description of the model of self-adaptive system
that we take as a reference in this work. In Section 4
we describe our simulation environment for self-adaptive
component-based systems.

2. RELATED WORK
Different works on using a component-based approach to

design hardware/software systems have been published. In
[3] an approach to mix hardware and software components
seamlessly at design time is presented. Robocop [8], with its
run-time and resource-management frameworks, proposes
a service-oriented architecture for designing consumer elec-
tronics devices. Both in [3] and in [8] wrappers are used
to make hardware component exposing the same kind of in-
terface as software ones. DeepCompass [2] is a framework,
based on the Robocop model, for performance analysis and
design space exploration. In [11] system-level design space
exploration for reconfigurable heterogeneous systems is dis-
cussed. Kahn Process Networks (KPN) are used as the
model of computation at application level. The paper also
discusses how to avoid deadlock when executing KPN nodes
in a heterogeneous platform. While our work shares a num-
ber of concepts with the aforementioned ones (namely, the
use of wrappers for hardware components, the introduction
of a middleware to support distributed components, and the
problem of deadlock for KPN nodes), what we propose is
aimed at supporting runtime self-adaptivity of devices and
not just design time integration of components.

In [10] a framework for self-adaptive component-based
software applications is described. The idea behind this
framework is to provide a standardized way to manage self-
adaptivity in software. For this reason, separation of con-
cerns (i.e., putting different concerns, that are functionali-
ties and adaptation management, into different components
that address them independently) between adaptation man-
agement and software functionalities is adopted. Also in our
work, which is based on the model of self-adaptive systems
discussed in [4], we put emphasis on separation of concerns.

Figure 1: Component-based self-adaptive system.

The model discussed in [4] is based on a layered approach
and it provides the capability to manage hardware and soft-
ware self-adaptivity globally to satisfy system and applica-
tion non-functional requirements (i.e., goals such as perfor-
mances and power consumption). The two system layers
defined are the hardware and the software ones. These two
layers have separate self-adaptation mechanisms.

3. MODEL
Figure 1 shows the model of the self-adaptive system re-

fined from [4] for component-based applications. The model
is composed of a hardware and an application level, plus an
intermediate level named Run Time Environment (RTE).
The RTE and the application level are grouped together as
a macro-level (software macro-level). Software macro-level
and hardware level will monitor the applications being ex-
ecuted and self-adapt to reach their goals (whenever it is
possible with the available system resources). Each level will
check the results provided by lower levels along with their
timing to check whether the required goals have been met.
By this mechanism each macro-level is the only responsible
for its own goals; goals propagate with a waterfall mech-
anism from the software level to the hardware level. The
software macro-level self-adapts by changing both software
parameters or by changing using different implementations
of the same functionalities. The hardware level has the ca-
pability to self-adapt by changing both hardware parameters
(e.g., the clock frequency) and the hardware architecture to
satisfy the goals imposed by either the software macro-level
or at design time (e.g., temperature thresholds). Decisions
on reconfigurations are anyway made locally at each level.

Compilers are used to bridge the semantic gap between
the application programming language and the platform
language. However compilation is a design-time activity
whereas self-adaptation is done at run-time. In order to sup-
port adaptation at the application level and to truly sepa-
rate the application logic from self-adaptivity, the semantics

resource CPU1: A, B, D

resource CPU2: C, G

resource FPGA1: E, F

pipeline App1: A ! B & C ! D ! E ! F ! G

Figure 2: An application described in SACRE.

CPU2

FPGA1CPU1
B

DA

input port

connector

output port

E F

GC

Figure 3: A sample application and its mapping.

of the application has to be present even at run-time. To
address this problem, we propose to use component-based
software for the development of self-adaptive applications.
This will bring into the overall picture a component platform
that consists of a component framework and a component
repository. The component framework is the run-time sys-
tem that implements the glue logic in compliance with the
component model. Component model defines the standard
interfaces between components and thus allows the frame-
work to be aware of the run-time characteristics of software
components. This awareness can be exploited to act as a
semantic bridge between the application logic and the plat-
form. This calls for a middleware that provides standard
interfaces to the components residing on different cores, co-
processors, custom functional blocks on reconfigurable fab-
ric for their communication. Moreover, this middleware can
provide the basis for development of a distributed run-time
environment that manages the adaptation of the application
for high-level goals such as fault-tolerance, high performance
and low-power consumption by migrating the components
between the available resources and/or increasing the par-
allelism of the application by instantiating multiple copies
of the same component on different resources. Such a self-
adaptive run-time environment constitutes a fundamental
part in enabling system-wide self-adaptivity. The middle-
ware will be a software layer for the processor cores and
a hardware wrapper for the custom hardware blocks. The
eventual goals of this work are to realize a self-adaptation
scenario by measuring the performance and power metrics
as a result of changing the mappings of components on the
platform at run-time; and to realize a fault-tolerance sce-
nario in presence of a dynamically faulty unit. In achieving
these goals, as the first phase, the system is being simulated
at a functional level in order to identify the requirements
for the functionality of system blocks shown in Figure 1. At
later phases, the system will be refined to be able to run on
real platforms.

4. SIMULATION
In order to simulate the self-adaptive HW/SW component

run-time environment vision, we have chosen to extend our
SACRE (Self-Adaptive Component Run-time Environment)
framework.

CPU2

FPGA1CPU1
B

DA

C G

E F

1

1 2

2

3

5

4

Figure 4: Middleware components (in gray) added
to resource assemblies.

4.1 SACRE
SACRE has been developed originally for enabling self-

adaptivity at application level. It allows creating self-
adaptive applications based on software components and
incorporates the Monitor-Controller-Adaptor loop with the
application pipeline. It is based on the KPN model of com-
putation [6], it has a simple language for creating component
pipelines, and it is written in Java. A SACRE component is
defined by extending from the Component abstract class and
specifying its input and output ports as well as its task().
More formally a pipeline is a tuple (C, D) where C is a set
of components; and D is a connection relation, C × C that
defines the links between component ports. As long as there
are no cycles (i.e., if there is a path from ci to cj , there
is no path from cj to ci), there are no constraints on the
read/write orders within a component. Otherwise, compo-
nents are constrained to read and write in a specific order
in order to guarantee deadlock-freedom. SACRE supports
parametric and structural run-time adaptations over such
pipelines.

4.2 Extending SACRE for the RTE layer
In order to simulate self-adaptation at RTE level, SACRE

needs to be extended with new concepts such as resources
and mapping of components onto resources. An assembly is
a composition of components into a single component that
has a set of input ports consisting of the unconnected in-
put ports of the composed components; and a set of out-
put ports consisting of the unconnected output ports of the
composed components. A component contained in an as-
sembly can not be part of another assembly. An assembly
of software components is called a composite when the com-
position is meant to create a new software component. An
assembly of software components is called a resource when it
is meant to show that those components are running on the
resource. Resources allow us to specify mapping of HW/SW
components onto resources. A mapping is a total function
from components to resources. Figure 2 and 3 shows a sam-
ple pipeline and its mapping corresponding to the sample
SACRE description.

Implementing the assembly concept as an extension to a
SACRE component brings some concerns for the deadlock-
freedom of the system. If we define the resource pipeline as
the pipeline that emerges from the composition of resource
components, there is no guarantee that a mapping from a
cycle-free application pipeline onto a set of resources will
result in a cycle-free resource pipeline. For example, the
resource pipeline in Figure 3 has two cycles (CPU1-CPU2,
CPU1-FPGA1-CPU2). This can be overcome if we could
impose an order on the reads and writes that go through the
ports of the resource. If we implement read/write operations

as a forwarded method call from the ports of the internal
components of a resource to the ports of the resource, the
read/write order cannot be imposed. Instead, access to the
resource ports should be controlled by a middleware com-
ponent that imposes an orderly read/write to the external
resource channels in order to guarantee deadlock-freedom.
Figure 4 shows how these custom middleware components
are inserted into the pipeline. The task() of a middleware
component is simply implemented by calling read and write
operations on its ports (i.e., forwarding of tokens from its
inputs to outputs) without causing a deadlock. This order
is determined by a labeling function that labels the edges
of the application pipeline with an integer value that repre-
sent the maximum number of application components that a
token may go through until arriving to that edge. The mid-
dleware is responsible for forwarding the tokens from the
input channels with a smaller-labeled-channel-first fashion.
Figure 4 shows the labels for the example pipeline.

Having extended the SACRE framework with resource
and mapping concepts, in order to implement the adaptation
capabilities at RTE level, we need to extend the adaptable
application pipeline concept that currently exists in SACRE
to adaptable resources and adaptable resource pipelines.
Since resources are SACRE components, parametric adap-
tation of resources comes for free. Structural adaptation of
the resource pipeline implies having a dynamic number of
CPUs and FPGAs on board. Since this is not possible at
run-time on a real platform, we should actually consider the
structural adaptation of the application pipeline over the re-
source pipeline. One type of such RTE level adaptations is
the migration of a component from one resource to another.
Considering again the example in Figure 3, a more favorable
mapping in terms of performance and communication band-
width may be if component C was mapped to CPU1. In that
case component C could have had a better cache hit rate by
running on the same core as its source component. To mi-
grate a component, the adaptor has to be able to create a
new component of the same type as the migrated one in the
destination resource; the middleware components should be
able to remove/add the ports that will serve to the communi-
cation of C in the destination resource. The parallelization
adaptation pattern involves creating a parallel instance of a
component and introducing input routers and output merg-
ers. This adaptation would increase the throughput if the
instances were mapped onto different CPUs. The reliabil-
ity adaptation pattern involves parallelizing instances of a
component on different cores along with multiplicator com-
ponents and majority voter components for each input and
output ports respectively. Similarly mapping decisions for
these components may have implications on the performance
measurements of the system.

5. FUTURE WORK
We are currently implementing the extensions as de-

scribed in this paper to the SACRE framework. This work
will allow us to refine the self-adaptive system and even-
tually implement it on a real platform. However even at
such functional level, simulation of the self-adaptive RTE
can allow us to experiment with the adaptation control al-
gorithms that may vary from centralized to decentralized
strategies. Associating costs (e.g. cycles, latency, power) to
application components in relation with the resource they
execute on, we can obtain some estimates to drive different

mapping policies. Moreover application of adaptation pat-
terns in presence of resources needs to be studied in future
refinements of the system.

6. ACKNOWLEDGMENTS
This work was partially funded by the European Commis-

sion under the Project AETHER (No. FP6-IST-027611).
The paper reflects only the authors’ view; the European
Commission is not liable for any use that may be made of
the information contained herein.

7. REFERENCES
[1] JTRS software communications architecture (SCA).

WWW page. http://sca.jpeojtrs.mil.

[2] E. Bondarev, M. R. V. Chaudron, and E. A. de Kock.
Exploring performance trade-offs of a jpeg decoder
using the deepcompass framework. In WOSP ’07:
Proceedings of the 6th international workshop on
Software and performance, pages 153–163, New York,
NY, USA, 2007. ACM.

[3] C. Bunse and H.-G. Groß. Unifying hardware and
software components for embedded system
development. In R. H. Reussner, J. A. Stafford, and
C. A. Szyperski, editors, Architecting Systems with
Trustworthy Components, volume 3938 of Lecture
Notes in Computer Science, pages 120–136. Springer,
2004.

[4] O. Derin, A. Ferrante, and A. V. Taddeo. Coordinated
management of hardware and software self-adaptivity.
Journal of Systems Architecture, 55(3):170 – 179, 2009.

[5] L. Józwiak. Life-inspired systems and their
quality-driven design. In W. Grass, B. Sick, and
K. Waldschmidt, editors, ARCS, volume 3894 of
Lecture Notes in Computer Science, pages 1–16.
Springer, 2006.

[6] G. Kahn. The semantics of a simple language for
parallel programming. In J. L. Rosenfeld, editor,
Information Processing ’74: Proceedings of the IFIP
Congress, pages 471–475. North-Holland, New York,
NY, 1974.

[7] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[8] H. Maaskant. A robust component model for consumer
electronic products. In F. Toolenaar and P. van der
Stok, editors, Dynamic and Robust Streaming in and
between Connected Consumer-Electronic Devices,
pages 167–192. Springer, The Netherlands, 2005.

[9] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum,
and A. Wolf. An architecture-based approach to
self-adaptive software, 1999.

[10] T. L. Pierre-Charles David. Towards a framework for
self-adaptive component-based applications. Lecture
Notes in Computer Science, Distributed Applications
and Interoperable Systems, 2893:1, 14, 2003.

[11] K. Sigdel, M. Thompson, A. Pimentel, T. P. Stefanov,
and K. Bertels. System-level design space exploration
of dynamic reconfigurable architectures. In the 8th
international workshop on Embedded Computer
Systems: Architectures, Modeling, and Simulation
(Samos), pages 279 – 288, July 2008.

