
A Methodology for Testing IPSec-based Systems
Uljana Boiko∗, Alberto Ferrante†, Antonietta Lo Duca∗, and Vincenzo Piuri†

∗ ALaRI Institute, University of Lugano
Lugano, Switzerland

Email: {boiko, loduca}@alari.ch
† Department of Information Technologies,

University of Milan
Milano, Italy

Email: {ferrante, piuri}@dti.unimi.it

Abstract— IPSec is a suite of protocols adding security to com-
munications at the IP level. This suite of protocols is becoming
more and more important as it is included as mandatory security
mechanism in IPv6.
This paper focuses on a methodology for testing IPSec imple-
mentations. A UML model of the IPSec suite of protocols was
developed. Test cases were obtained applying a coverage method
on the same model.

I. INTRODUCTION

IPSec is mainly composed of two protocols, Authentication
Header (AH) and Encapsulating Security Payload (ESP). The
former allows authentication of each IP datagram’s headers or
– depending on the operational mode that has been selected
– of the entire IP datagram. The latter allows encryption –
and optionally authentication – of the entire IP datagram or
of the IP payload, depending on the operational mode that
has been selected, namely the transport and the tunnel modes.
The former was designed for being used in host machines,
while the latter is for secure gateways. In tunnel mode the
entire original IP datagram is processed; the result becoming
the data payload of a new IP datagram with a new IP header.
In transport mode only parts of the original IP datagram are
processed (e.g. the data payload for the ESP protocol) and
the original IP header is kept with some small modifications.
Through encryption, authentication, and other security mech-
anisms included in IPSec (e.g. anti-reply), data confidentiality,
data authentication, and peer’s identity authentication can be
provided [1], [2], [3]. In each of the protocols within the
IPSec suite, many choices for cryptographic algorithms are
available (for example AES, DES, Triple-DES, and many
others can be used within the ESP protocol). The concept
of Security Association (SA) is fundamental to IPSec. A
Security Association is a simplex “connection” that afford
security services to the traffic carried by it [4]. To secure
typical bi-directional communication between two peers, two
SAs (one in each direction) are required. Security services are
afforded to a SA by the use of AH, or ESP, but not both.
Security association establishment can be performed through
a protocol named Internet Key Exchange (IKE) [3]. IKE is
a two-phase protocol: in the first phase a bidirectional SA
– named IKE SA – is established; in the second phase this
SA is used to negotiate the parameters (protocol, protocol

settings, keys, . . . ) for the IPSec SAs to be created. The use of
IKE is not mandatory for IPSec and SAs can be established
either manually or through other suitable protocols. IKE is
quite complex since it provides many operational modes and
options. A second version of this protocol, IKEv2, is about
to be released. At some extent this version will be simpler
than the previous one [5]. Two databases are involved in
processing IP traffic relative to security associations. These
two databases are the Security Policy Database (SPD) and the
Security Association Database (SAD). The former specifies the
policies that determine the disposition of all IP traffic. The
latter contains parameters that are associated with each SA.
For each packet traversing the IP communication layer, the
SPD needs to be queried. If, in conformance with the SPD,
an IP datagram needs to be processed by IPSec, the SAD
needs also to be queried to discover the parameters of the
considered SA. Information about whether a SA has already
been created or not are contained in the SPD. If a suitable SA
for the IP datagram to be processed does not exist, it needs to
be established, for example through IKE.

It is clear that IPSec is a complex suite of protocols
(even when not considering IKE), therefore developing a test
methodology and, most of all, writing a suitable set of test
cases is not trivial. For network protocols, not only is it
important to perform functional tests, but also to perform
interoperability tests. The first ones are used to verify that an
implementation works in a correct way (i.e. in conformance
with its specifications), the others to verify that a specific pro-
tocol implementation can correctly interoperate with different
implementations of the same protocol. Interoperability tests are
described in some websites and papers like, for example, [6],
[7]. By using high-level and implementation-independent func-
tional testing, different implementations of the same protocol
– being them done in software, hardware, or mixed hardware-
software – can be easily tested. In this paper we therefore focus
on this kind of testing. Theoretically, being able to guarantee
the conformance of an implementation to its specifications
(i.e. the RFCs), should also guarantee its interoperability with
all the other different implementations of the same protocol,
but actually none of the existing implementations of IPSec
completely conforms to RFCs. Therefore interoperability tests



=?

specifications
Formal

Implementation

Inputs

Test results

Fig. 1. Testing of a system using its specifications

need to be performed anyway. In order to develop a functional
test for IPSec, many different test cases need to be considered
even for a limited set of possible protocol configurations.
Therefore a methodology for finding a good set of test cases
needs to be put in place.

Being our work focused on high-level testing, we chose to
model IPSec through the Unified Modelling Language (UML).
In fact UML is a widely used language allowing a high-
level and implementation-independent description of systems.
This modelling language groups together static and dynamic
diagrams that allow to describe structure and behavior of
systems.

In [8] UML is used as a formal method for describing a
protocol named PROFISafe. [9] describes how to generate
test cases from finite state machine descriptions of protocols;
in this paper external states of the protocol are considered
for generating test patterns. In our work internal protocol
states are used instead. Therefore the two papers cited above
were only taken as starting point for our work. Some other
papers like [10], [11], [12] describe other methodologies for
protocol testing. [13] describes a tool for validating IPSec
configurations and implementations.

Aim of this paper is to describe our test methodology and
to prove that building an UML model of IPSec and using it to
generate test cases is a viable solution. Therefore this paper
focuses only on a part of IPSec: ESP in tunnel mode.

In the next sections we will describe the methodology we
have used for functional testing, the test coverage method we
have used, and the results we have obtained.

II. TESTING METHODOLOGY

Our testing methodology is mainly based on using a model
obtained from the IPSec specifications. This model can be
used both for generating test sequences and for testing the
considered implementation. Test sequences are ordered lists of
inputs, i.e., protocol settings plus input patterns. Values taken
from these sequences are given as input both to the protocol
model and to the protocol implementation; the obtained results
are then compared. Correct implementations must always give
the same output as the model (supposing the model itself
is correct and validated). Figure 1 shows in general how
testing can be performed. In this diagram the implementation
is intended to be run on a suitable machine, this means that

obtained results may also depend on the software running on
that machine (mostly on the operating system in case of an
IPSec implementation).

As for any other complex system, obtaining a good test
case coverage is not an easy task. Most of all, covering all
the possible test cases, possibly only once, requires a suitable
methodology. Describing the system that needs to be tested
– IPSec in this case – by the means of a formal language,
helps in obtaining a good test coverage. The unambiguous
specifications given by a formal language, may also help
obtain the test sequences automatically. The same model for
the test execution phase can obviously be used to generate test
sequences.

In this sections the obtained specifications and the method-
ology for generating test sequences are described.

A. IPSec Modelling

UML was chosen for its flexibility as modeling language.
As stated above, UML is composed of different languages
which allow to describe both static and dynamic aspects of
the same system. Class diagrams are fit for describing static
aspects of systems (or parts of them). A general view of the
main components and of their connections is described by
these diagrams. This representation was therefore chosen in
our work to describe the main structure of IPSec. Statecharts
diagrams allow to formally describe the dynamic behavior of
systems (or parts of them). This language is an evolution of
the finite state machine one. System behavior is represented
through its states and possible transitions between them. One
of the key advantages of statecharts on finite state machines
is their capability to provide hierarchical representations.
Statecharts can in fact be nested inside states of other
higher-level statecharts. This is one of the main reasons why
we decided to use this modeling language for describing the
behavior of some parts of IPSec. Here follows a description
of the main diagrams we have drawn.

1) Class Diagram of IPSec: Figure 2 shows the class
diagram representing the parts of IPSec involved in IP packet
processing and their connections. IPSec is composed of
two protocols, AH and ESP that are represented by the
AHProtocol and by the ESPProtocol classes. As both AH
and ESP can be used for transport and tunnel mode, they are
specialized to these modes through inheritance. TransportAH
and TunnelAH are the specializations of AHProtocol in
transport and in tunnel mode, respectively. TransportESP
and TunnelESP are the specializations of ESPProtocol for
transport and tunnel mode, respectively. HeaderESP and
TrailerESP are classes implementing the ESP Header and
Trailer generation. ESP header and trailer are special fields
added to the normal IP headers and at the end of the IP
datagram when ESP is used. The newIPHeader class is used
in tunnel mode both for AH and ESP to generate the new IP
headers that are needed in this mode.



Rules

Inbound_SPD

Outbound_SPD

Policy_SPD

IKEProtocol

SAD

IKE_SA

Inbound_SAD Outbound_SAD

SA

IPSecProtocol

AHProtocol
ESPProtocol

TransportAH TunnelAH TransportESP TunnelESP

NewIPHeader

Trailer_ESP

Header_ESP

IKE_SAD

SA_DB
SP_DB

manages

calls

uses

Is composed by

0..*

Is composed by

0..*

Is composed by

0..*

Is composed by

0..*

is composed by

0..*

queries

queries

Fig. 2. UML class diagram of IPSec

The model shown here also includes the IETF IKE protocol.
IKE was chosen, among all the other available ones, for
implementing SA negotiation. In fact, if a security association
has not yet been created and needs to be used - and this can
be discovered querying the security policy database - a SA
negotiation needs to take place. This functionality is here
provided by the IKEProtocol class.

The Policy SPD class manages the security policy
databases, one for inbound and one for outbound traffic.
These databases are contained in the Inbound SPD and in
the Outbound SPD, respectively. inbound and outbound SPD
databases are composed of records representing sets of rules
for each connection (Rules class). These two databases are
very similar and can be derived by a common class (SP DB).

For each packet traversing the system, the security policy
databases are queried through the Policy SPD class to
discover if any kind of IPSec processing needs to be applied
on it. If it needs to and a suitable security association has
already been created, the packet considered is processed
by one of the specializations of the AHProtocol or of the
ESPProtocol classes. Whether AH or ESP must be used
is specified, along with all the needed parameters, in the
security association database, managed by the SAD class.
Also in this case two separate databases, Inbound SAD and
Outbound SAD, need to be used for inbound and outbound
SAs that have already been created. The Inbound SAD and
Outbound SAD class can be derived by a base one, SA DB.
IKE SAs are kept in a separate database, represented by
the IKE SAD class. Records of this database are objects of
the IKE SA class. This class is derived from the SA one.
In fact, IKE SAs are very similar to normal SAs; the main
difference between these two types of SA is that IKE SAs
are bidirectional, while normal SAs are monodirectional.

2) Statecharts: Statecharts were drawn for the main classes
shown in the class diagram. So far only the ESP protocol in
tunnel mode was completely modelled.

Figure 3 shows the statecharts diagram of the TunnelESP
class. This diagram gives a behavioral description of the entire
ESP protocol in tunnel mode. A similar diagram can be drawn
for ESP in transport mode.

Figure 4 shows the statecharts diagram of the Header ESP
class. This diagram shows all the steps necessary to generate
ESP headers.

Figure 5 shows the statecharts diagram of the Trailer ESP
class. This diagram shows all the steps necessary to generate
ESP trailers. Our model contains other statecharts diagrams
that are not shown here for space reasons.

B. Generation of Test Sequences

A formal language along with a coverage method can be
used for generating test sequences [8], [12]. We used state-
charts as formal language and the transition coverage method
as coverage criterion. In this method all possible combinations
of transitions are considered. Selecting a transition means
selecting the necessary combinations of inputs allowing to
move from the current state to one of the following states.
These inputs correspond both to protocol settings and to input
data patterns. Therefore this method allows to test all the
combinations of parameters of the protocols providing changes
in their internal states. Test patterns can be represented as
follows:

SI i1, i2, i3, . . . , in; o1, o2, . . . , om SE

where:
• SI is the initial state.
• i1, i2, i3, . . . , in are the values of the inputs to be applied.
• o1, o2, . . . , om are the values of the obtained outputs.
• SE is the final state.



putPayload

insertOriginalIPPacket

computeESPTrailer concatESPTrailer
encryption

putHeaderESP

putIPHeader

concatNewIPHeader

computeNewIPHeader

concatAuthField authenticationESP

skipAuthentication

extractAuthAlgo

concatHeaderESP

evPayloadExtracted: evExtractPayload

evESPTrailerComputed: evESPTrailerInserted: 

evEncryptionDone: 

[itsNewIPHeader.evNewIPHeaderDone()]: 

evNewIPHeaderInserted/packet_finished=tre;before_new_header=false;: 

[before_new_header=true]: 

evConcatDone/before_new_header=true;packet_finished=false;: 

evAuthDone: 

headerESPInserted: 

evSkippingDone/before_new_header=true;packet_finished=false;: 

[auth_algorithm="NULL"]: 

[auth_algorithm!="NULL"]: 

evHeaderESPcomputed: 

payloadInserted: 

evSkipDone: 

evSequenceNumberOverflow: 

Fig. 3. Statechart of the TunnelESP class.

extractSPI calculateSequenceNumber

extractSequenceNumberFromSA

incrementSequenceNumber concatSN2HeaderESP

extractAntiReplay

rollCounter create_newSA

evSPIInserted: 

evSeqNumExtracted: 

[else]/overflow=true: 

[seqNumber<boundSeqNum]: 

evSNIncremented: 

[else]: 

[anti_replay]: 

evSNadded2HeaderESP: 

evCounterRolled: evNotFinished/ESPProtocol.gen(new evSequenceNumberOverflow());: 

Fig. 4. Statechart of the Header ESP class.

Outputs here included are the ones needed to verify the
correctness of the outputs of the implementation. In fact these
outputs are the ones obtained by applying the test inputs to
the model.

The following algorithm is applied to generate test patterns:
1) Go to the initial state SI .
2) For each of the possible transitions apply inputs activat-

ing the transition to state Si+1. This state is the next one
following the chosen transition. Put the obtained inputs
in an ordered list.

3) Apply recursively step 1 and 2 considering Si+1 as
initial state, until final state SE is reached.

This procedure has to be applied recursively to all the nested
statecharts. Each test pattern represents a sequence of inputs
(i.e. configuration and datagram parameters) that allow to pass
through a certain set of internal states. The application of all
the test cases obtained allows to go through all the possible
cases that may happen when the protocol itself is used. As
stated earlier, the outputs obtained need to be compared with
the ones generated by the implementation under test when the
same sequence of inputs is applied.

III. RESULTS

Our methodology was applied to the model of the ESP
protocol in tunnel mode. In this way the related test cases

were obtained. Test cases were generated by hand just as a
proof of concept, but, once the UML model is completed
and validated, a suitable tool can be used for doing that. The
test cases obtained are 65. Not only do these cases include
different configurations for the ESP protocol, but also all the
different input patterns that are needed for testing. These 65
test cases should be repeated for each considered combination
of algorithms within the ESP protocol. In this protocol a
symmetric-key cryptographic algorithm is usually combined
with an authentication one. Commonly used symmetric-key
cryptographic algorithms are AES, DES, and Triple-DES.
Most widely spread authentication algorithms are HMAC-
SHA-1 and HMAC-MD5 but also the new HMAC-SHA-2 is
becoming widely used. Therefore we can assume that at least
3 symmetric key cryptographic algorithms and 3 authentica-
tion algorithms need to be considered, thus having 585 test
cases (not considering possible different parameters for the
algorithms). Each test case requires a different configuration
of the ESP protocol and this implies a renegotiation of the
related security associations.

IV. CONCLUSIONS AND FUTURE WORK

A test methodology for IPSec has been introduced in this
paper. A UML model of a part of IPSec along with a test
pattern generation methodology based on statecharts have been



wait

putPadding

checkAlgorithmContent

applyDefaultPadding

extractPaddingFromAlgorithm countLengthOfUsefulData

extractMinSize

computePaddingBytes
encryptionUsePadding

checkForAlignement

addPadding

notAddPadding

insertPadding

computePaddingLength

applyAlgorithmCoding applyDefaultCoding

applyRandomCoding applyZeroCoding

InsertPadLength

putNextHeader

evCodeAlgo: 

evDefaultCoding: 

evCodingSelected: 

evCodingSelected: 

evCountingDone: 

evMinSizeExtracted: 

[lenData<minSize]: 

[else]/diff=0: 

evDiffComputed: 

startESPTrailer: 

evDiffCountedEnc: 

evDiffCountedAL: 

[diff=0]: 

[else]/startPadding=true: 

[startPadding=false]: 

evPadLenComputed: 

[else]: 

[defaultCoding]/i=1: 

evAdded2Vector: 

[else]/startPadding=false: 

evAlgoCodingApplied: 

[randomCoding]/i=1: 

 [ese] / i=1

evAdedd2Vector: 

evAdded2VectorRan: 
[i<padLength]/i++: 

[else]/startPadding=false: 

evPaddingDone: 

evPadLengthInserted: 

[i<padLength]/i++: 

[i<padLength]/i++: 
[else]/startPadding=false: 

Fig. 5. Statechart of the TrailerESP class.

developed. The test pattern generation methodology allows to
cover all the possible test cases for the protocols in the IPSec
suite. So far ESP in tunnel mode is the only part of IPSec we
have modeled by statecharts. Therefore the methodology we
described in this document was applied on this protocol only.
This allowed to show that our approach is viable. Giving a
complete model of the IPSec suite of protocols is beyond the
scope of this paper.

Future developments of this work include completing the
UML model of IPSec and validating it. Test patterns for all
the other parts of the system can be then generated. The
coverage method described in this paper was applied to our
model by hand (test cases were few enough to allow this
approach), but once the model is validated, a tool for automatic
test case generation can be conveniently used. Other coverage
criteria may also be selected and the results obtained with
these criteria can be compared with the ones obtained with the
criteria adopted here. A study on how different algorithms may
influence others within the same protocols, may help lowering
the number of test cases that are needed. It may be, in fact,
that not all the combinations of algorithms really need to be
tested.

ACKNOWLEDGMENT

The authors would like to thank Microsoft Co. for having
partially supported this research under the grant “Microsoft
Embedded Systems RFP” awarded to the ALaRI Institute of
the University of Lugano.

REFERENCES

[1] S. Kent and R. Atkinson, “IP Authentication Header – RFC2402,”
IETF RFC, 1998. [Online]. Available: http://www.ietf.org/rfc.html

[2] ——, “IP Encapsulating Security Payload (ESP) – RFC2406,” IETF
RFC, 1998. [Online]. Available: http://www.ietf.org/rfc.html

[3] D. Harkins and D. Carrell, “The Internet Key Exchange (IKE) –
RFC2409,” IETF RFC, 1998. [Online]. Available: http://www.ietf.org/
rfc.html

[4] S. Kent and R. Atkinson, “Security Architecture For the Internet
Protocol – RFC2401,” IETF RFC, 1998. [Online]. Available:
http://www.ietf.org/rfc.html

[5] C. Kaufman, “The internet key exchange (IKEv2) protocol,” IETF
Internet Draft, 22 Mar. 2004, expires: Semptember 2004. [Online].
Available: http://www.ietf.org/internet-drafts/draft-ietf-ipsec-ikev2-13.
txt

[6] IPSec WWW-based Interoperability Tester (IPsec WIT). NIST. [Online].
Available: http://w3.antd.nist.gov/Groups/ITG/IP Security/WIT/wit.html

[7] IPSec interoperability tester: Testing paradigm. NIST. [Online].
Available: http://ipsec-wit.antd.nist.gov/newipsecdoc/paradigm.html

[8] H. Ural and B. Yang, “A test sequence selection method for protocol
testing,” IEEE Transactions on Communications, April 1994.

[9] D. P. Sidhu and T.-K. Leung, “Formal methods for protocol testing: A
detailed study,” IEEE Transactions on Software Engineering, pp. 413–
426, April 1989.

[10] K. L. Mills, “Testing OSI protocols: NBS advances the state of the art,”
Data Communications Magazine, March 1984.

[11] B. Sarikaya, “Protocol test generation, trace analysis and verification
techniques,” Comput. Networks ISDN Syst., pp. 285–297, March 1988.

[12] R. Malik and R. Mühlfeld, “A case study in verification of UML
statecharts: tre PROFIsafe protocol,” Journal of Universal Computer
Science, vol. 9, pp. 138–151, 2003.

[13] R. Sailer, A. Acharya, M. Beigi, R. Jennings, and D. Verma, “IPSec
validate – a tool to validate IPSec configurations,” in Proc. LISA, 15th
System Administration Conference, San Diego, California, December
2001.


