
IEEE EMBEDDED SYSTEMS LETTERS, VOL. XX, NO. X, DECEMBER 2016 1

Securing Hardware Accelerators: a New Challenge
for High-Level Synthesis

(Perspective Paper)

Christian Pilato, Member, IEEE, Siddharth Garg, Kaijie Wu,
Ramesh Karri, Senior Member, IEEE and Francesco Regazzoni, Member, IEEE

Abstract—High-level synthesis (HLS) tools have made sig-
nificant progress in the past few years, improving the design
productivity for hardware accelerators and becoming mainstream
in industry to create specialized System-on-Chip (SoC) architec-
tures. Increasing the level of security of these heterogeneous ar-
chitectures is becoming critical. However, state-of-the-art security
countermeasures are still applied only to the code executing on
the processor cores or manually implemented into the generated
components, leading to suboptimal and sometimes even insecure
designs. This paper discusses extensions to HLS tools for creating
secure heterogeneous architectures.

Index Terms—High-Level Synthesis, Hardware Security.

I. INTRODUCTION

WE are entering the era of the Internet of Things (IoT),
where about 200 billion “things” will be connected

by 2020 [1]. Each of these systems is becoming increasingly
heterogeneous, combining processor cores and specialized
accelerators into the same chip to implement System-on-Chip
(SoC) architectures. Since the SoC complexity is growing,
these systems will be designed by re-using components (more
than 90% by 2020 [2], see Fig. 1). Designers will increasingly
use high-level synthesis (HLS) to raise the abstraction level so
as to improve the design productivity [3].

These heterogeneous systems are also used in critical sys-
tems such as aircraft, automobiles, banks, and medical devices,
where security is a major concern [4]. These systems should
not leak secrets to unclassified outputs and untrusted execution
should never access or affect critical information. These and
related security concerns are doubling spending on cyber-
security in the last five years (see Fig. 1), and we expect this
trend to continue [5]. Securing heterogeneous SoCs requires
careful analysis and a complete understanding of hardware
vulnerabilities. For example, the designer must understand
how the information is elaborated to avoid leaking sensitive

Manuscript received May 24, 2017; revised October 10, 2017; accepted
November 3, 2017. This work has received funding from the EU Commis-
sion’s H2020 Programme under grant agreement N. 732105, the CERBERO
project. This work was also supported by the National Science Foundation
(A#: 1526405). This manuscript was recommended for publication by C.
Gebotys. (Corresponding author: Christian Pilato.)

C. Pilato and F. Regazzoni are with the Advanced Learning and Research
Institute (ALaRI), Faculty of Informatics, Università della Svizzera italiana
(USI), Lugano, Switzerland (e-mail: christian.pilato@usi.ch).

S. Garg, K. Wu, and R. Karri with the NYU center for cybersecurity (cyber.
nyu.edu), New York University (NYU), New York, NY, USA. Karri is also
supported in part by CCS-AD, NYU-AD. Karri and Garg are supported in
part by Boeing.

2
,0
0
9

2
,0
1
0

2
,0
1
1

2
,0
1
2

2
,0
1
3

2
,0
1
4

2
,0
1
5

2
,0
1
6

2
,0
1
7

2
,0
1
8

2
,0
1
9

2
,0
2
0

2
,0
2
1

2
,0
2
2

2
,0
2
3

2
,0
2
4

0

20

40

60

80

100

pe
rc

en
t

of
de

si
gn

% of designs with pre-existing components

0

50

100

150

Cybersecurity spending in US

0

50

100

150

bi
lli

on
s,

U
SD

(projected)

Fig. 1. There is an increase in the percentage of reused components in SoCs
(source: ITRS [2]). There is also an increase in spending in the U.S. on
cybersecurity (Source: TIA [5]).

information or tampering by injecting malicious data [6].
Furthermore, the components should be protected from side-
channel attacks [7]. Several countermeasures have been pro-
posed to thwart such attacks, but they have not been considered
during the generation of SoC components in a systematic
and comprehensive way. When combined and applied after
the design process to avoid leaving the SoC unprotected, it
potentially leads to suboptimal solutions.

This paper highlights emerging challenges that HLS tools
will have to tackle to ensure security of the generated hard-
ware accelerators. Hardware security must be considered as
a primary objective side-by-side performance and power in
the optimization process during HLS. In our vision, this
line of research will be important to enable the design of
secure hardware accelerators, a fundamental block towards
secure-by-construction systems. We first describe hardware
accelerators and identify security vulnerabilities (Section II).
Then, we present state-of-the-art solutions for such challenges
(Section III) and discuss how these security solutions can be
integrated into future HLS tools (Section IV).

II. VULNERABILITIES IN HARDWARE ACCELERATORS

A hardware accelerator is a component tailored to execute
a specific functionality. These specialized components are
able to improve performance (10-100×) and lower energy
consumption (100-1,000×) when compared to implementing
them in software running on processors [8]. Fig. 2(a) shows the

cyber.nyu.edu
cyber.nyu.edu


Datapath

reg_0 reg_1 reg_2

+

-

reg_3

mux

Controller

Internal m
em

 bus

local 
SPM

mem 
ctrl

(a)

CPU (T0)

Trusted
Data

Untrusted
Data

CPU (T2)

Untrusted
Data

Accelerator (T1)

(b)

CPU

encrypt(…);

CryptoAccelerator(AES)

-3e-06

-2e-06

-1e-06

0

1e-06

2e-06

3e-06

4e-06

5e-06

0 5 10 15 20 25 30 35 40 45 50

Cu
rre

nt
 A

bs
or

pt
io

n 
[A

]

Time [10 ps]

Correct key 23

DPA to extract key

(c)

Authorized SoC

CPU

Optimized
Accelerator

System Interconnect

Malicious 
designer

Accelerator
HDL

Unauthorized 
SoC

(d)

Fig. 2. (a) accelerator microarchitecture, along with examples of vulnerabilities: (b) data produced by the accelerator at time T1 cannot be considered secure
by the following CPU execution at time T2, (c) side-channel attacks for key extraction on an AES implementation, and (d) reverse engineering to get an
unauthorized copy of the functionality.

microarchitecture of an accelerator, which is composed of the
controller and the datapath. The execution of the function is
controlled by a finite-state machine (controller) that, based on
a set of conditions, determines which operations are executed
by the arithmetic resources (datapath) in any given clock cycle.
These resources elaborate input data, provided through param-
eters or stored in memories – either in local directly-accessible
scratchpads or external memory accessed through memory
controllers – with the possibility of computing on memory
addresses (e.g., pointer arithmetic) [9]. This is achieved by
daisy chaining all memory components (i.e., local scratchpads
and the controller for the external memory). In this way,
accelerators can automatically identify the memory location
accessed by a memory operation based on the dynamic value
of the address, broadening the range of applications that can
leverage such heterogeneous building blocks.

Since heterogeneous architectures are leveraging hard-
ware accelerators to provide energy-efficient high-performance
computation, such components are an attractive target for
attacks. Current protection mechanisms target software execu-
tion on processors [10], [11], are manually implemented [12],
and introduce significant overheads [13]. The approach is not
efficient and scalable when applied to accelerators, requiring
revisiting the design process.

We discuss hardware vulnerabilities listed in the CWE list1,
focusing on how to exploit design errors and alter the accel-
erator behavior. First, vulnerabilities in hardware accelerators
can be exploited to launch software-based attacks. Even if
it is not possible to implement a different functionality as
is done by exploiting buffer overflow (CWE-121) and code
injection (CWE-94), one can manipulate input values (either
configuration parameters or memory values) to exploit design
errors. For example, attackers may exploit vulnerabilities in
the accelerator controller to launch a wide range of attacks
(CWE-691: Insufficient Control Flow Management) [14]. At-
tackers can also exploit vulnerabilities in the SoC architecture.
For example, the attacker may tamper with the system bus to
insert malicious operations to trigger unauthorized execution
of the accelerators (CWE-284: Improper Access Control) [15].

If the system is not adequately protected, the resulting
execution may be compromised. One can access internal and

1The Common Weakness Enumeration List (CWE), http://cwe.mitre.org

sensitive data through the output port or via the memory space
shared with the attacker (CWE-485: Insufficient Encapsulation
and CWE-922: Insecure Storage of Sensitive Information).
Hence, the execution and the outcome of an accelerator are not
secure if not adequately verified and protected (see Fig. 2(b)).

Even when the specification of the accelerator is secure,
its implementation can be compromised through physical
attacks, where the adversary exploits the weaknesses of the
implementation (CWE-693: Protection Mechanism Failure).
Side-channel attacks can be used to extract secret data from
embedded devices and high-end cloud servers. A paradigmatic
example is the Advanced Encryption Standard (AES). The
algorithm is mathematically secure, but its physical imple-
mentations have been attacked using power and timing attacks
(CWE-326: Inadequate Encryption Strength). Accelerators can
help mitigate side-channel attacks, for instance ensuring con-
stant execution time and thus making timing attacks infeasi-
ble. For example, Intel recently added the AES-NI instruc-
tions [11]. Accelerators must be protected from a variety of
other attacks, including fault-based and side-channels [16]. If
not adequately protected, a circuit separated from the rest of
the processor can be localized easily, becoming the target of
precise power side-channel, ultimately leading to easy key
recovery (see Fig. 2(c)).

Besides these hardware vulnerabilities for the end user,
secure accelerators should be protected from reverse engi-
neering, insertion of hardware Trojans (CWE-912: Hidden
Functionality) and unauthorized copy. Otherwise, the tech-
nological advantage of the IP provider can be undermined,
creating billions of dollars of economical damage [17]. The
hardware description of the accelerator depends not only on
the initial high-level specification but also on the optimizations
selected by the designer and performed by the design tools.
Reverse engineering would make all these assets available to
unauthorized parties (see Fig. 2(d)).

In a nutshell, since designers are integrating hardware
accelerators into their designs, we expect securing these com-
ponents to become relevant in the coming years.

III. SECURING HARDWARE ACCELERATORS

The proliferation of third-party applications for embedded
systems (e.g., in Apple App Store or Google Play) is becoming

http://cwe.mitre.org


a serious threat to the user’s privacy since such systems
can leak personal information without authorization [10].
Moreover, the complexity of such applications is increasing
exponentially. So, part of these applications are accelerated in
hardware. This section describes the existing software-based
solutions to prevent or detect malicious attacks, highlighting
how they could be effectively and efficiently integrated into
the design process of hardware accelerators to achieve secure
heterogenous computation.

Dynamic Information Flow Tracking. Systems can be
compromised by injecting malicious data to execute unau-
thorized code (e.g., buffer overflow). Dynamic Information
Flow Tracking (DIFT) prevents such attacks by marking
insecure data and tracking their use during the execution [6].
Many DIFT solutions have been proposed for software.
The software-based solutions leverage instrumentations of the
source code [6], modifications to the virtualization environ-
ment [10], or hardware extensions, like external co-processors
that process the execution trace in parallel [18]. However, sim-
ilar solutions do not exist for hardware accelerators, making
it impossible to accurately and efficiently track information
flows in heterogeneous SoCs. The dedicated microarchitecture
of a hardware accelerator cannot execute additional functions.
Although the attacker cannot inject code limiting the type of
accelerator’s misbehaviors, the designer cannot integrate DIFT
without changing the microarchitecture. Given the increasing
complexity of these components, manual modification of the
hardware is becoming impracticable, while modifications to
the underlying Boolean gate library is expensive [13]. Con-
versely, hardware logic for DIFT can be generated during the
automatic synthesis of the accelerator and it can be optimized
by exploiting high-level information (e.g., constant values,
control flows, etc.)

Side-Channel Countermeasures. Malicious attackers un-
dermine mathematically secure algorithms using side-channel
attacks on their physical implementations [12]. Security prim-
itives must be protected from side-channel attacks using
countermeasures such as enforcing constant time computation
to defeat timing attacks or adding randomness to prevent
the attacker to extract secret keys using power analysis [7].
Timing attacks can be prevented by ensuring a computation
time which is independent of the input data. Similarly, power
attacks can be prevented by reducing the amount of compu-
tation that is data-dependent or by masking the sensitive data
with random values, reducing thus the correlation between
computed data and actual data of the algorithm. All these
techniques require modifications of the hardware in specific
parts of the design, i.e., the ones elaborating the information
to be protected. Security primitives are manually identified
by the designer, who is then in charge of implementing the
protections. This is performed as an additional step once all
other design goals have been met. However, this approach
limits the optimizations that can be performed for performance
and cost. Sometimes, these solutions are not even implemented
in a proper way, yielding insecure design. In addition, such
attacks depend on the target technology and there is no one-
size-fits-all solution. So, a security-aware design flow requires

Accelerator
(Verilog)

HLS

Scheduling

Resource Binding

Controller Synthesis

Compiler optimizations

Identification of security primitives 
(e.g. sensible data, security operations etc)

Code transformations (e.g. random 
precharging, Boolean masking etc)

Synthesis of protection mechanisms 
(e.g. side-channel countermeasures etc)

Extra Logic for security monitoring 
(e.g. DIFT, Logic Obfuscation etc)

Security extensions

C-based
Spec

Tech
Library

Constraints Security
Spec

Fig. 3. HLS-based design flow for hardware accelerators with security-aware
extensions.

to include an automatic identification of the security primitives
to be protected, followed by an automated implementation of
side-channel countermeasures that are tailored for the target
platform.

Protection Againt Reverse Engineering. Several ap-
proaches can be used to protect the generated code against
reverse engineering, which is a first step for the insertion
of hardware Trojans or for counterfeiting. The designer can
obfuscate the functionality of the accelerator by adding extra
logic and connections during datapath and controller synthe-
sis [19], [20]. This complicates the reverse-engineering of the
design, dramatically increasing the costs for an adversary and
reducing the possibilities of inserting the triggers of hardware
Trojans. The designer can embed a secret key that the users
must know to unlock the functionality of the circuit [21].
Additional approaches watermark and fingerprint accelerators
to identify unauthorized copies [22]. All these solutions require
modifications to the design during the creation of the accel-
erator microarchitecture. While simple changes to the gate-
level netlists provide low protection, applying these techniques
during HLS offer many opportunities to generate more secure
accelerators [23].

IV. SECURITY EXTENSIONS TO HIGH-LEVEL SYNTHESIS

HLS automatically translates a high-level specification of a
functionality (e.g., in C/C++/SystemC) into the corresponding
RTL implementation [3], [24], as shown in Fig. 3. It receives
as input the description of the function, along with synthesis
constraints and the target technology library. The HLS flow
starts with compiler optimizations (e.g., constant propagation,
loop transformations, and bitwidth analysis) and then performs
scheduling (to determine which operations are executed in
each clock cycle), resource and interconnection binding (to
determine which hardware resources are used and how they are
interconnected), and controller synthesis (to generate the con-
trolling logic). Finally, it produces the HDL description ready
for logic synthesis. Several algorithms have been proposed to
improve the performance (either latency or throughput) and
the cost (either resources or power consumption) [3]. HLS
tools have made significant progress in the last years and have



been successfully used to design accelerators for a variety of
applications [25], [26]. However, they do not address security
issues. To the best of our knowledge, no commercial HLS tools
implement security countermeasures as part of their design
flow. This is a limitation because guaranteeing the security
of pervasively and massively connected devices is extremely
complex. However, it is also an opportunity because HLS
tools are a natural place to embed the security mechanisms
described above.

We envision extending the traditional HLS flow to include
security as shown in the right-hand side of Fig. 3. Security-
aware HLS supports the analysis of the input descriptions
at the compiler level to automatically identify and optimize
security primitives and the sensible data to protect. Code
transformations can be applied to increase the level of security
of the input specification through, for example, Boolean mask-
ing. Software-based techniques can be complemented with
hardware protections that can be synthesized automatically
and transparently. The subsequent synthesis process starts
from this optimized specification and automatically generates
protection mechanisms inside the datapath or the controller.
For example, efficient DIFT logic can be inserted during
resource and interconnection binding to monitor the data
exchanges between trusted and untrusted regions mindful of
the performance and resource overheads. Information leakage
via side-channels can be mitigated by automatically applying
countermeasures such as masking or constant-time routines.
Finally, obfuscation can be automatically applied when the
modules are generated or during the third-party intellectual
property integration. These techniques can also limit the
insertion of hardware Trojans [27]–[29].

In conclusion, our ultimate goal is the integration of efficient
security protections in accelerators. This can be only achieved
by embracing HLS and extending it to comprehensively sup-
port hardware security.

V. CONCLUSION AND FUTURE DIRECTIONS OF WORK

This paper discussed the security challenges when designing
hardware accelerators in heterogeneous SoC architectures. We
analyzed hardware vulnerabilities for which state-of-the-art
countermeasures are not fully integrated and automated into
current design flows for hardware accelerators.

We envision high-level synthesis to be naturally extended
for the automatic synthesis of a variety of protection mecha-
nisms. The proposed HLS-based, security-aware methodology
will be able to create heterogeneous architectures that are
efficient (in terms of performance, energy, and resources) and
secure at the same time.

REFERENCES

[1] H. Bauer, M. Patel, and J. Veira, “The Internet of Things: Sizing up
the opportunity,” McKinsey&Company High Tech, Dec. 2014. [Online].
Available: http://www.mckinsey.com/industries/high-tech/our-insights/
the-internet-of-things-sizing-up-the-opportunity

[2] ITRS, “Roadmap (system drivers),” 2009. [Online]. Available: http:
//www.itrs.org/

[3] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T.
Chen, H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels,
“A Survey and Evaluation of FPGA High-Level Synthesis Tools,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 10, pp. 1591–1604, Oct. 2016.

[4] D. Selwood, “Heterogeneous Processing, SoCs and FPGAs,” Electronic
Engineering Journal, Aug. 2015. [Online]. Available: http://eejournal.
com/archives/articles/20151029-altera/

[5] TIA, “ICT Market Review and Forecast,” 2016.
[6] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure Program

Execution via Dynamic Information Flow Tracking,” in Proceedings of
ASPLOS, Oct. 2004, pp. 85–96.

[7] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Proceedings of CRYPTO, 1999, pp. 388–397.

[8] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in ISSCC Digest of Technical Papers, Feb. 2014, pp. 10–14.

[9] C. Pilato, F. Ferrandi, and D. Sciuto, “A design methodology to
implement memory accesses in High-Level Synthesis,” in Proceedings
of CODES+ISSS, Oct. 2011, pp. 49–58.

[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of OSDI,
Oct. 2010, pp. 393–407.

[11] G. Hofemeier and R. Chesebrough, “Introduction to In-
tel AES-NI and Intel Secure Key Instructions,” Jul.
2012. [Online]. Available: https://software.intel.com/en-us/articles/
introduction-to-intel-aes-ni-and-intel-secure-key-instructions

[12] A. Gornik, A. Moradi, J. Oehm, and C. Paar, “A hardware-based coun-
termeasure to reduce side-channel leakage: Design, implementation, and
evaluation,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 8, pp. 1308–1319, Aug. 2015.

[13] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and
R. Kastner, “Theoretical fundamentals of gate level information flow
tracking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 8, pp. 1128–1140, Aug. 2011.

[14] A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, and M. Tehranipoor,
“AVFSM: A framework for identifying and mitigating vulnerabilities in
FSMs,” in Proceedings of DAC, Jun. 2016, pp. 1–6.

[15] M. Wolf, A. Weimerskirch, and C. Paar, “Security in automotive bus
systems,” in Proceedings of ESCAR, 2004.

[16] F. Regazzoni, T. Eisenbarth, J. Grossschadl, and L. Breveglieri, “Power
Attacks Resistance of Cryptographic S-Boxes with Added Error Detec-
tion Circuits,” in Proceedings of DFT, 2007, pp. 508–516.

[17] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1207–1228, Aug. 2014.

[18] H. Kannan, M. Dalton, and C. Kozyrakis, “Decoupling dynamic infor-
mation flow tracking with a dedicated coprocessor,” in Proceedings of
DSN, Jun. 2009, pp. 105–114.

[19] N. Veeranna and B. C. Schafer, “Efficient behavioral intellectual prop-
erties source code obfuscation for high-level synthesis,” in Proceedings
of LATS, Mar. 2017, pp. 1–6.

[20] J. Rajendran, A. Ali, O. Sinanoglu, and R. Karri, “Belling the CAD:
Toward security-centric electronic system design,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 11, pp. 1756–1769, 2015.

[21] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of
Integrated Circuits,” in Proceedings of DATE, Mar. 2008, pp. 1069–1074.

[22] C.-H. Chang, M. Potkonjak, and L. Zhang, Hardware IP Watermarking
and Fingerprinting. Springer, 2016, pp. 329–368.

[23] J. Rajendran, H. Zhang, O. Sinanoglu, and R. Karri, “High-level
synthesis for security and trust,” in Proceedings of IOLTS, Jul. 2013,
pp. 232–233.

[24] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An Introduction
to High-Level Synthesis,” IEEE Design Test of Computers, vol. 26, no. 4,
pp. 8–17, Jul. 2009.

[25] C. Pilato, Q. Xu, P. Mantovani, G. D. Guglielmo, and L. P. Carloni,
“On the design of scalable and reusable accelerators for big data
applications,” in Proceedings of CF, May 2016, pp. 406–411.

[26] F. D. Robinson, L. H. Crockett, W. H. Nailon, and R. W. Stewart, “High-
level synthesis for medical image processing on Systems on Chip: A case
study,” in Proceedings of FPL, Aug. 2016, pp. 1–2.

[27] N. Veeranna and B. Schafer, “Hardware Trojan detection in Behavioral
Intellectual Properties (IPs) using Property Checking Techniques,” IEEE
Transactions on Emerging Topics in Computing, Jun. 2016.

[28] N. Veeranna and B. C. Schafer, “Trust filter: Runtime hardware Trojan
detection in behavioral MPSoCs,” Journal of Hardware and Systems
Security, pp. 1–12, 2017.

[29] J. Rajendran, O. Sinanoglu, and R. Karri, “Building trustworthy systems
using untrusted components: A high-level synthesis approach,” IEEE
Trans. on VLSI Systems, vol. 24, no. 9, pp. 2946–2959, Sep. 2016.

http://www.mckinsey.com/industries/high-tech/our-insights/the-internet-of-things-sizing-up-the-opportunity
http://www.mckinsey.com/industries/high-tech/our-insights/the-internet-of-things-sizing-up-the-opportunity
http://www.itrs.org/
http://www.itrs.org/
http://eejournal.com/archives/articles/20151029-altera/
http://eejournal.com/archives/articles/20151029-altera/
https://software.intel.com/en-us/articles/introduction-to-intel-aes-ni-and-intel-secure-key-instructions
https://software.intel.com/en-us/articles/introduction-to-intel-aes-ni-and-intel-secure-key-instructions

	Introduction
	Vulnerabilities in Hardware Accelerators
	Securing Hardware Accelerators
	Security Extensions to High-Level Synthesis
	Conclusion and Future Directions of Work
	References

